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Abstract: We present a hardware–software 

coprocessing speech recognizer for real-time 

embedded applications. The system consists of a 

standard microprocessor and a hardware 

accelerator for Gaussian mixture model (GMM) 

emission probability calculation implemented on a 

field-programmable gate array. The GMM 

accelerator is optimized for timing performance by 

exploiting data parallelism. In order to avoid large 

memory requirement, the accelerator adopts a 

double buffering scheme for accessing the acoustic 

parameters with no assumption made 

on the access pattern of these parameters. 

Experiments on widely used benchmark data show 

that the real-time factor of the proposed system is 

0.62, which is about three times faster than the 

pure software-based baseline system, while the 

word accuracy rate is preserved at 93.33%. As a 

part of the recognizer, a new adaptive beam-

pruning algorithm is also proposed and 

implemented, which further reduces the average 

real-time factor to 0.54 with the word accuracy rate 

of 93.16%. The proposed speech recognizer is 

suitable for integration in various types of voice 

(speech)-controlled applications. 

 

Index Terms—Automatic speech recognition 

(ASR), embedded system, hardware–software 

codesign, real-time system, softcore-based system. 

 

                    I. INTRODUCTION 

 

         RECENTLY, automatic speech recognition 

(ASR) on embedded platforms has been gaining its 

popularity. ASR has been widely used in human–

machine interaction, such as mobile robots [1]–[3], 

consumer electronics [4], manipulators in industrial 

assembly lines [5], automobile navigation systems 

[6], and security systems [7]. More sophisticated 

ASR applications with larger vocabulary sizes and 

more complex knowledge sources are expected in 

the future. As a result, the demand for high 

performance, accurate, and fast embedded ASR is 

increasing. 

 

           At another extreme, a speech recognizer can 

be tailor-made in a pure hardware-based system 

[10]–[12] for good timing performance. However, in 

many human-machine interaction applications, the 

search space for decoding speech varies dynamically 

depending on the user’s response. A dedicated 

hardware architecture with a static search space has 

limited capabilities to deal with the dynamic nature 

of ASR. In addition, the architecture becomes too 

application-specific and targets to only ASR 

applications. It is unlikely that the datapath of the 

hardware can be reused for applications other than 

ASR. 

 

       As a compromise, a hardware–software 

codesign approach seems to be attractive [13], [14]. 

A typical hardware–software coprocessing system 

consists of a general purpose processor and hardware 

units that accelerate time critical operations to 

achieve required performance. Computationally 

intensive parts of the algorithm can be handled by 

the hardware accelerator( s), while sequential and 

control-oriented parts can be run by the processor 

core. The additional advantages of the hardware–

software approach include the following. 
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      1) Rapid prototyping of applications. Developers 

can build their applications in software without 

knowing every detail of the underlying hardware 

architecture. 

      2) Flexibility in design modification. The parts of 

the algorithm which require future modification can 

be implemented initially in software. 

      3) Universality in system architecture. The use of 

the general purpose processor core enables  

 

developers to integrate ASR easily with other 

applications. 

 

       In this paper, we present the development and 

tradeoffs of a hardware–software coprocessing ASR 

system which primarily targets on embedded 

applications. The system includes an optimized 

hardware accelerator that deals with the critical part 

of the ASR algorithm. The final system achieves 

real-time performance with a combination of 

software- and hardware implemented functionality 

and can be easily integrated into applications with 

voice (speech) control. The rest of this paper is 

organized as follows. Section II briefly describes the 

fundamentals of ASR. Section III gives an overview 

of the proposed hardware–software coprocessing 

recognizer. The details of the hardware accelerator 

and the resultant timing improvement are presented. 

In Section IV, an adaptive pruning scheme is 

proposed, which further improves the timing 

performance. In Section V, the proposed 

coprocessing system is compared with other recently 

reported embedded ASR systems. Finally, Section 

VI concludes this paper. 

 

 

 
Fig. 1. Data flow diagram of a typical ASR system. The input 

of the system is an audio speech signal. The output is a 

sequence of words. 

 

                                 II. ASR 

In a typical hidden Markov model (HMM)-based 

ASR system [15], three main stages are involved. 

Fig. 1 shows the data flow within the ASR 

algorithm.  

 

        

 

 The first stage is feature extraction. Its main 

purpose is to convert a speech signal into a sequence 

of acoustic feature vectors, = {  }, 

where T is the number of feature vectors in the 

sequence. The entire speech signal is segmented into 

a sequence of shorter speech signals known as 

frames. The time duration of each frame is typically 

25 ms with 15 ms of overlapping between two 

consecutive frames. Each frame is characterized by 

an acoustic feature vector consisting of D 

coefficients. One of the widely used acoustic 

features is called mel frequency cepstral coefficient 

(MFCC) [16]. Feature extraction continues until the 

end of the speech signal is reached. The next stage is 

the calculation of the emission probability which is 

the likelihood of observing an acoustic feature 

vector. The emission probability densities are often 

modeled by Gaussian mixture models (GMMs). The 

last stage is Viterbi search which involves searching 

for the most probable word transcription based on 

the emission probabilities and the search space. 

        The use of weighted finite state transducers 

(WFSTs) offers a tractable way for representing the 

search space [17]. The advantage is that the search 

space represented by a WFST is compact and 

optimal [18], [19]. Fig. 2 shows an example of a 

search space. 

 

        Basically, a WFST is a finite state machine with 

a number of states and transitions. As shown in Fig. 

2, each WFST transition has an input symbol, an 

output symbol, and a weight. The input symbols are 

the triphone or biphone labels. The output symbols 

are the word labels. In ASR, a word is considered as 

a sequence of subword units called phones. Two or 
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three phones are concatenated to form biphones or 

triphones. Each triphone or biphone label is modeled 

by an HMM. In other words, each WFST transition 

in Fig. 2 is substituted by an HMM. The entire 

WFST is essentially a network of HMM states. 

 

         The WFST weights are the language model 

probabilities which model the probabilistic 

relationship among the words in a word sequence. 

Usually, a word is grouped with its preceding (n − 1) 

words. The n-word sequence called n-gram is 

considered as a probabilistic event. The WFST 

weights estimate the probabilities of such events.  

Typical n-grams used in ASR are unigram (one 

word), bigram (two word, also known as wordpair  

grammar), and trigram (three word). 

 

 
Fig. 2. Search space represented by a WFST. Each WFST 

transition x : y/z has three attributes. x is an input symbol 

representing a triphone or biphonelabel. y is an output label 

representing a word label. Labels can be _ which are empty 

labels. z is the weight representing a language model   obability. 

Each triphone or biphone label is modeled by an HMM. The aij 

and αij are the transition probabilities of an HMM. 

 

        For implementation purposes, each HMM state 

has a bookkeeping entity called token which records 

the probability (score) of the best HMM state 

sequence ended at that state. Each token is 

propagated to its succeeding HMM states according 

to the topology of the search space. For example, in 

Fig. 2, the token in State 3 of the /k-ae+t/ HMM will 

replicate itself. One will propagate to its own state 

with HMM transition probability (a33 in this 

example) added to the token’s score. Another 

replicated token will enter State 1 of the /ae-t/ HMM 

and the WFST weight (ω6) will be added to its 

score. When two tokens meet at an HMM state, only 

the better token with a higher score survives and 

stays at the HMM state. Other losing tokens are 

discarded. This method of performing the Viterbi 

search is known as token passing [20]. In addition to 

a score, tokens also record a sequence of word labels 

encountered during propagation. 

 

         The pseudocode of the ASR algorithm is 

shown in Fig. 3. In the beginning of the algorithm, a 

token is instantiated in each of HMM states at the 

start of each word (Line 2). Qword−start is a set of 

word-starting HMM states. The score of each token 

is reset (Line 3). After the initialization, the 

algorithm begins to process each frame of speech. 

An acoustic feature vector, ot, is generated by 

feature extraction (Line 6) for each speech frame. 

 

 
Fig. 3. Pseudocode of the speech recognition algorithm with 

beam pruning. 
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Fig. 4. Pseudocode of the V iterbi_search function. 

 

         After feature extraction and setting the pruning 

threshold, the algorithm iterates through all the 

HMM states that have a token (Lines 12–18). If the 

token stays above the pruning threshold, the 

emission probability of that state is calculated (Line 

14). After that, Viterbi search is performed on that 

HMM state (Line 15). Token-passing takes place 

during this process. It returns a set of new HMM 

states, V, which are occupied by the new tokens after 

token passing. The new tokens are accumulated into 

another set ˜Qt+1 which is prepared for the next 

speech frame.  

     Once all the speech frames have been processed, 

the best token is found among all the word-end 

HMM states denoted by Q (Lines 21–22). The best  

 

token records its propagation path from which the 

word transcription can be determined. 

 

     Fig. 4 shows the pseudocode of the V 

iterbi_search() function. The for-loop iterates 

through all the succeeding states of q (Lines 2–9). 

For each succeeding state, new_score is calculated 

(Line 3) where the transition weight can be either the 

HMM transition probability for within-HMM 

transitions or theWFST transition weight for cross-

HMM transitions. If new_score is reater than the 

score at q_suc, the new_score will update the score 

at q_suc (Line 5). The path record of the original 

token at q_suc is replaced by the path record at q 

(Line 6). 

 

       III:HARDWARE–SOFTWARE        

COPROCESSING SYSTEM 

           The ASR algorithm is partitioned into three 

main parts: feature extraction, GMM emission 

probability calculation, and Viterbi search. The 

speech recognizer is first implemented in software 

where the 16-b fixed-point implementation of the 

recognizer is compared with the floating-point 

implementation. The experimental results show that 

there is no degradation in recognition accuracy in the 

fixed-point implementation. Hence, the fixed-point 

system is chosen as our baseline system for time 

profiling. It shows that about 69% of the total 

elapsed time isspent on GMM computation. The 

proportions of time spent on feature extraction and 

Viterbi search are 7% and 24%, respectively. Since 

GMM computation is the most computationally 

intensive part, a hardware accelerator is designed in 

order to speed up this part of the ASR algorithm. 

 

     System Architecture 

 

             The architecture of the hardware–software 

coprocessing system is shown in Fig. 5. The system 

consists of an Altera Nios II processor core [24] and 

a GMM hardware accelerator. The Nios II processor 

acts as the control unit of the entire system. Feature 

extraction and Viterbi search are implemented in 

software. When the system needs to perform a GMM 

calculation, the processor instructs the accelerator to 

carry out the computation. The accelerator returns 

the computation result to the Nios II core. The entire  

 

coprocessing system is synthesized on an Altera 

Stratix II EP2S60F672C5ES field-programmable 

gate array (FPGA) [25]. 

 

 
Fig. 5. System architecture of the hardware–software 

coprocessing recognizer with the GMM hardware accelerator. 
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Inside the brackets, it shows the data size and the ASR 

substages in which the data are accessed. The Nios II processor 

performs feature extraction and Viterbi search, while the GMM 

accelerator is used for GMM computation. 

 

                   IV. ADAPTIVE PRUNING 

 

       In Section III, the hardware–software 

coprocessing system demonstrates a significant 

improvement on the decoding speed. One method for 

lowering the number of active tokens is to adopt a 

tighter pruning beamwidth. However, it will 

introduce search errors which often decrease the 

recognition accuracy. Our goal is to reduce the 

decoding time of those utterances which have a 

relatively greater real-time factor, while keeping the 

recognition accuracy of the other utterances. In order 

to fulfil this goal, an adaptive pruning scheme is 

proposed, where the pruning beamwidth is adaptive 

according to the number of active tokens. 

 

A. Algorithm 

 

        Fig. 6 shows the pseudocode of the ASR 

algorithm with adaptive pruning. In the beginning, 

the beamwidth is initialized to a value (Line 4). 

Before token passing, the algorithm modifies the 

pruning beamwidth according to the number of 

active tokens, n(˜Qt). If the number of tokens is 

greater than a threshold, τupper, a tighter beamwidth  

 

is adopted. The beamwidth is decreased by a certain 

amount denoted by δ (Lines 11–12). However, if the  

 

number of active tokens is smaller than another 

threshold, τlower, and also if the beamwidth is 

tightened previously, the beamwidth will be relaxed 

and its value will be increased by δ (Lines 13–16). 

The rest of the algorithm is the same as the one 

shown in Fig. 3. 

 

       The proposed pruning scheme is more flexible 

than the narrow and fixed pruning scheme. The 

number of active tokens is often time varying in the 

duration of an utterance. The fixed pruning scheme 

applies a tight beamwidth throughout the entire 

utterance regardless of the number of active tokens. 

On the other hand, the adaptive scheme allows 

relaxation of the beamwidth in parts of the utterance 

where the workload is less heavy. 

 

        Another conventional pruning technique is 

called histogram pruning [27]. In histogram pruning, 

the recognizer only allows at most a certain number 

of active tokens to stay in the search space before the 

next speech frame arrives. If the number isover the 

allowable limit (for example, ˜N ), the ˜N most 

probable tokens remain active. Other tokens are 

pruned. It can guarantee a real-time factor of below 

1.00 for all the utterances. However, the major issue 

with histogram pruning is that the recognizer will be 

idle in some speech frames where the number of 

active tokens is below the allowable limit. The idle 

time cannot be distributed to those speech frames 

which have a heavy workload (a large number of 

active tokens). Consequently, less probable tokens in 

these frames are pruned, resulting in a decrease in 

word accuracy. 
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Fig. 6. Speech recognition algorithm with adaptive beam 

pruning. 

 

 
Fig. 7. Real-time factor of 1200 utterances in hardware–

software coprocessing system. Adaptive beam pruning versus 

Fixed beam pruning. 

 

 

 
 

                                            TABLE I 

PERFORMANCE OF RECENTLY DEVELOPED 

EMBEDDED SPEECH RECOGNITION SYSTEMS AND 

OUR PROPOSED SYSTEM ON THE 993-WORD RM1 

TASK 

 

      In terms of implementation, the proposed 

adaptive scheme is simpler than histogram pruning. 

Implementing histogram pruning requires a sorted 

list of the token scores. For each token, the 

recognizer needs to perform an insertion sort which 

involves searching for the token’s ranking in a sorted 

list of the previously iterated token scores. 

Maintaining the tokens in a sorted order is 

computationally intensive. In contrast, the adaptive 

pruning scheme only requires to record the number 

of active tokens and a few decision-making 

statements (if-statements) for adjusting the 

beamwidth once for every speech frame (Lines 11–

17). 

   B. Timing Profile 

 

      Fig. 7 shows the real-time factor of the 

coprocessing system. Fixed beam pruning and 

adaptive beam pruning are compared. The 

beamwidth is held constant at 170 for the fixed 

beam-pruning scheme. In adaptive beam pruning, the 

original_beamwidth variable is also set to 170. The 

thresholds, τlower and τupper, are 1900 and 2300, 

respectively. The beamwidth adjustment value is 10 

(δ = 10). These parameters are determined 

empirically. In the fixed beam-pruning scheme, 

about 94% of the utterances have a real-time factor 
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below one. When the adaptive beam-pruning scheme 

is used, this percentage increases to 9.75%. Only 3  

 

out of 1200 utterances have a real-time factor above 

one. Compared with the fixed beam-pruning scheme, 

there is a small degradation in recognition accuracy 

which decreases from 93.33% to 93.16%.We have 

also tried to tighten the adaptive pruning scheme by 

adjusting τupper and τlower to smaller values (τupper 

= 1700, τlower = 1250), so that the real-time factors 

of all the utterances are below 1. The word accuracy 

rate reduces to 92.62%. 

 

         V. PERFORMANCE COMPARISON 

 

      Table I compares the performance of our 

proposed system with other existing systems. The 

clock frequency of the proposed system is 

determined by the maximum working frequency 

(fmax) of the GMM accelerator which is 120 MHz. 

The pure software-based systems require a higher 

number of clock cycles for performing the same task. 

As a result, a higher clock frequency is needed. On 

the other hand, pure hardwarebased systems and 

hardware–software coprocessing systems can run the 

same task at lower clock frequency. 

 

    As shown in the table, the word accuracy rate of 

our proposed system is within the range of the other 

systems. The proposed system performs better than 

PocketSphinx [8] and In Silico Vox [10], [11] 

systems. The AT&T system from [9] shows slightly 

better word accuracy but the acoustic features are 

stored in files and accessed by the StrongARM 

platform from a PC. It suggests that the acoustic 

features may not be generated by the StrongARM 

platform. Therefore, in order to achieve the same 

real-time factor including feature extraction, a tighter 

beamwidth may be needed, which may decrease the 

word accuracy. 

 

      For the Seoul National University [13], [14] 

system, the word accuracy rate is higher than the 

other systems. However, their results are based on 

only 300 utterances, whereas there are 1200 test 

utterances in our experiments. The real-time factors 

of the proposed system, as shown in Table III, are 

calculated by dividing the total decoding time by the 

speech duration of the entire test corpus. Table III 

shows that the real-time factors of our proposed  

 

 

system are well below 1.00, and they are much better 

than those of the other reported systems. 

       For many ASR applications, it is not necessary 

to ensure that the real-time factors of all the 

utterances are below 1.00 as the user can tolerate a 

small time delay in machine response. However, for 

more complex applications where the system needs 

to perform multiple tasks with ASR, it will be 

beneficial if ASR can be done as quickly as possible, 

so that the remaining time can be used for other 

tasks. As the real-time factors of our proposed 

system are well below 1.00, it indicates that the 

proposed system is more capable of multitasking 

with ASR than other reported systems. The Seoul 

National University system [13], [14] is also a 

hardware–software coprocessing system. However, 

the realtime factor of their system is not shown and 

thus its timing performance cannot be compared with 

our proposed system. 

 

                    VI. CONCLUSION 

 

             The proposed ASR system shows much 

better real-time factors than the other approaches 

without decreasing the word accuracy rate. Other 

advantages of the proposed approach include rapid 

prototyping, flexibility in design modifications, and 

ease of integrating ASR with other applications. 

These advantages, both quantitative and qualitative, 

suggest that the proposed coprocessing architecture 

is an attractive approach for embedded ASR. 

 

        The proposed GMM accelerator shows three 

major improvements in comparison with another 

coprocessing system [13], [14]. First, the proposed 

accelerator is about four times faster by further 

exploiting parallelism. Second, the proposed 

accelerator uses a double-buffering scheme with a 

smaller memory footprint, thus being more suitable 

for larger vocabulary tasks. Third, no assumption is 

made on the access pattern of the acoustic 

parameters, whereas the accelerator in [13] and [14] 

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

7www.ijert.org



has a predetermined set of parameters. 

 

      Finally, we have presented a novel adaptive 

pruning algorithm which further improves the real-

time factor. Compared with other conventional 

pruning techniques, the proposed algorithm is more  

 

flexible to deal with the time-varying number of 

active tokens in an utterance. The performance of the 

proposed system is sufficient for a wide range of 

speech-controlled applications. For more complex 

applications which involve multiple tasks working 

with ASR, further improvement of timing 

performance, for example, by accelerating the 

Viterbi search algorithm, might be required. 

 

         The proposed coprocessing architecture can 

easily accommodate dditional hardware accelerators. 

Aside from better word accuracy and timing 

performance, power consumption is also another 

important issue for embedded applications. The 

proposed architecture is not tied to any specific 

target technology. One of the future development 

paths is to transfer the current implementation from 

FPGA to very large scale integration which 

consumes less power. 

 

        Our future work includes some further 

refinements of the speech recognition algorithm, 

exploration of design space to look for 

improvements of the hardware–software 

coprocessing system, and encapsulation of the 

speech recognizer into an intellectual property block 

that can be easily used in other applications. 
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