
Voice Based Robo Using Automatic Speech

Recognization System

M. Sravan Kumar B.Chinna rao P.M.Francis

M.tech(PG student) Prof.&Head,Dept.of ECE Asst.Prof. in Dept. of ECE

GITAS GITAS GITAS

Abstract: We present a hardware–software

coprocessing speech recognizer for real-time

embedded applications. The system consists of a

standard microprocessor and a hardware

accelerator for Gaussian mixture model (GMM)

emission probability calculation implemented on a

field-programmable gate array. The GMM

accelerator is optimized for timing performance by

exploiting data parallelism. In order to avoid large

memory requirement, the accelerator adopts a

double buffering scheme for accessing the acoustic

parameters with no assumption made

on the access pattern of these parameters.

Experiments on widely used benchmark data show

that the real-time factor of the proposed system is

0.62, which is about three times faster than the

pure software-based baseline system, while the

word accuracy rate is preserved at 93.33%. As a

part of the recognizer, a new adaptive beam-

pruning algorithm is also proposed and

implemented, which further reduces the average

real-time factor to 0.54 with the word accuracy rate

of 93.16%. The proposed speech recognizer is

suitable for integration in various types of voice

(speech)-controlled applications.

Index Terms—Automatic speech recognition

(ASR), embedded system, hardware–software

codesign, real-time system, softcore-based system.

 I. INTRODUCTION

 RECENTLY, automatic speech recognition

(ASR) on embedded platforms has been gaining its

popularity. ASR has been widely used in human–

machine interaction, such as mobile robots [1]–[3],

consumer electronics [4], manipulators in industrial

assembly lines [5], automobile navigation systems

[6], and security systems [7]. More sophisticated

ASR applications with larger vocabulary sizes and

more complex knowledge sources are expected in

the future. As a result, the demand for high

performance, accurate, and fast embedded ASR is

increasing.

 At another extreme, a speech recognizer can

be tailor-made in a pure hardware-based system

[10]–[12] for good timing performance. However, in

many human-machine interaction applications, the

search space for decoding speech varies dynamically

depending on the user’s response. A dedicated

hardware architecture with a static search space has

limited capabilities to deal with the dynamic nature

of ASR. In addition, the architecture becomes too

application-specific and targets to only ASR

applications. It is unlikely that the datapath of the

hardware can be reused for applications other than

ASR.

 As a compromise, a hardware–software

codesign approach seems to be attractive [13], [14].

A typical hardware–software coprocessing system

consists of a general purpose processor and hardware

units that accelerate time critical operations to

achieve required performance. Computationally

intensive parts of the algorithm can be handled by

the hardware accelerator(s), while sequential and

control-oriented parts can be run by the processor

core. The additional advantages of the hardware–

software approach include the following.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

1www.ijert.org

 1) Rapid prototyping of applications. Developers

can build their applications in software without

knowing every detail of the underlying hardware

architecture.

 2) Flexibility in design modification. The parts of

the algorithm which require future modification can

be implemented initially in software.

 3) Universality in system architecture. The use of

the general purpose processor core enables

developers to integrate ASR easily with other

applications.

 In this paper, we present the development and

tradeoffs of a hardware–software coprocessing ASR

system which primarily targets on embedded

applications. The system includes an optimized

hardware accelerator that deals with the critical part

of the ASR algorithm. The final system achieves

real-time performance with a combination of

software- and hardware implemented functionality

and can be easily integrated into applications with

voice (speech) control. The rest of this paper is

organized as follows. Section II briefly describes the

fundamentals of ASR. Section III gives an overview

of the proposed hardware–software coprocessing

recognizer. The details of the hardware accelerator

and the resultant timing improvement are presented.

In Section IV, an adaptive pruning scheme is

proposed, which further improves the timing

performance. In Section V, the proposed

coprocessing system is compared with other recently

reported embedded ASR systems. Finally, Section

VI concludes this paper.

Fig. 1. Data flow diagram of a typical ASR system. The input

of the system is an audio speech signal. The output is a

sequence of words.

 II. ASR

In a typical hidden Markov model (HMM)-based

ASR system [15], three main stages are involved.

Fig. 1 shows the data flow within the ASR

algorithm.

 The first stage is feature extraction. Its main

purpose is to convert a speech signal into a sequence

of acoustic feature vectors, = { },

where T is the number of feature vectors in the

sequence. The entire speech signal is segmented into

a sequence of shorter speech signals known as

frames. The time duration of each frame is typically

25 ms with 15 ms of overlapping between two

consecutive frames. Each frame is characterized by

an acoustic feature vector consisting of D

coefficients. One of the widely used acoustic

features is called mel frequency cepstral coefficient

(MFCC) [16]. Feature extraction continues until the

end of the speech signal is reached. The next stage is

the calculation of the emission probability which is

the likelihood of observing an acoustic feature

vector. The emission probability densities are often

modeled by Gaussian mixture models (GMMs). The

last stage is Viterbi search which involves searching

for the most probable word transcription based on

the emission probabilities and the search space.

 The use of weighted finite state transducers

(WFSTs) offers a tractable way for representing the

search space [17]. The advantage is that the search

space represented by a WFST is compact and

optimal [18], [19]. Fig. 2 shows an example of a

search space.

 Basically, a WFST is a finite state machine with

a number of states and transitions. As shown in Fig.

2, each WFST transition has an input symbol, an

output symbol, and a weight. The input symbols are

the triphone or biphone labels. The output symbols

are the word labels. In ASR, a word is considered as

a sequence of subword units called phones. Two or

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

2www.ijert.org

three phones are concatenated to form biphones or

triphones. Each triphone or biphone label is modeled

by an HMM. In other words, each WFST transition

in Fig. 2 is substituted by an HMM. The entire

WFST is essentially a network of HMM states.

 The WFST weights are the language model

probabilities which model the probabilistic

relationship among the words in a word sequence.

Usually, a word is grouped with its preceding (n − 1)

words. The n-word sequence called n-gram is

considered as a probabilistic event. The WFST

weights estimate the probabilities of such events.

Typical n-grams used in ASR are unigram (one

word), bigram (two word, also known as wordpair

grammar), and trigram (three word).

Fig. 2. Search space represented by a WFST. Each WFST

transition x : y/z has three attributes. x is an input symbol

representing a triphone or biphonelabel. y is an output label

representing a word label. Labels can be _ which are empty

labels. z is the weight representing a language model obability.

Each triphone or biphone label is modeled by an HMM. The aij

and αij are the transition probabilities of an HMM.

 For implementation purposes, each HMM state

has a bookkeeping entity called token which records

the probability (score) of the best HMM state

sequence ended at that state. Each token is

propagated to its succeeding HMM states according

to the topology of the search space. For example, in

Fig. 2, the token in State 3 of the /k-ae+t/ HMM will

replicate itself. One will propagate to its own state

with HMM transition probability (a33 in this

example) added to the token’s score. Another

replicated token will enter State 1 of the /ae-t/ HMM

and the WFST weight (ω6) will be added to its

score. When two tokens meet at an HMM state, only

the better token with a higher score survives and

stays at the HMM state. Other losing tokens are

discarded. This method of performing the Viterbi

search is known as token passing [20]. In addition to

a score, tokens also record a sequence of word labels

encountered during propagation.

 The pseudocode of the ASR algorithm is

shown in Fig. 3. In the beginning of the algorithm, a

token is instantiated in each of HMM states at the

start of each word (Line 2). Qword−start is a set of

word-starting HMM states. The score of each token

is reset (Line 3). After the initialization, the

algorithm begins to process each frame of speech.

An acoustic feature vector, ot, is generated by

feature extraction (Line 6) for each speech frame.

Fig. 3. Pseudocode of the speech recognition algorithm with

beam pruning.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

3www.ijert.org

Fig. 4. Pseudocode of the V iterbi_search function.

 After feature extraction and setting the pruning

threshold, the algorithm iterates through all the

HMM states that have a token (Lines 12–18). If the

token stays above the pruning threshold, the

emission probability of that state is calculated (Line

14). After that, Viterbi search is performed on that

HMM state (Line 15). Token-passing takes place

during this process. It returns a set of new HMM

states, V, which are occupied by the new tokens after

token passing. The new tokens are accumulated into

another set ˜Qt+1 which is prepared for the next

speech frame.

 Once all the speech frames have been processed,

the best token is found among all the word-end

HMM states denoted by Q (Lines 21–22). The best

token records its propagation path from which the

word transcription can be determined.

 Fig. 4 shows the pseudocode of the V

iterbi_search() function. The for-loop iterates

through all the succeeding states of q (Lines 2–9).

For each succeeding state, new_score is calculated

(Line 3) where the transition weight can be either the

HMM transition probability for within-HMM

transitions or theWFST transition weight for cross-

HMM transitions. If new_score is reater than the

score at q_suc, the new_score will update the score

at q_suc (Line 5). The path record of the original

token at q_suc is replaced by the path record at q

(Line 6).

 III:HARDWARE–SOFTWARE

COPROCESSING SYSTEM

 The ASR algorithm is partitioned into three

main parts: feature extraction, GMM emission

probability calculation, and Viterbi search. The

speech recognizer is first implemented in software

where the 16-b fixed-point implementation of the

recognizer is compared with the floating-point

implementation. The experimental results show that

there is no degradation in recognition accuracy in the

fixed-point implementation. Hence, the fixed-point

system is chosen as our baseline system for time

profiling. It shows that about 69% of the total

elapsed time isspent on GMM computation. The

proportions of time spent on feature extraction and

Viterbi search are 7% and 24%, respectively. Since

GMM computation is the most computationally

intensive part, a hardware accelerator is designed in

order to speed up this part of the ASR algorithm.

 System Architecture

 The architecture of the hardware–software

coprocessing system is shown in Fig. 5. The system

consists of an Altera Nios II processor core [24] and

a GMM hardware accelerator. The Nios II processor

acts as the control unit of the entire system. Feature

extraction and Viterbi search are implemented in

software. When the system needs to perform a GMM

calculation, the processor instructs the accelerator to

carry out the computation. The accelerator returns

the computation result to the Nios II core. The entire

coprocessing system is synthesized on an Altera

Stratix II EP2S60F672C5ES field-programmable

gate array (FPGA) [25].

Fig. 5. System architecture of the hardware–software

coprocessing recognizer with the GMM hardware accelerator.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

4www.ijert.org

Inside the brackets, it shows the data size and the ASR

substages in which the data are accessed. The Nios II processor

performs feature extraction and Viterbi search, while the GMM

accelerator is used for GMM computation.

 IV. ADAPTIVE PRUNING

 In Section III, the hardware–software

coprocessing system demonstrates a significant

improvement on the decoding speed. One method for

lowering the number of active tokens is to adopt a

tighter pruning beamwidth. However, it will

introduce search errors which often decrease the

recognition accuracy. Our goal is to reduce the

decoding time of those utterances which have a

relatively greater real-time factor, while keeping the

recognition accuracy of the other utterances. In order

to fulfil this goal, an adaptive pruning scheme is

proposed, where the pruning beamwidth is adaptive

according to the number of active tokens.

A. Algorithm

 Fig. 6 shows the pseudocode of the ASR

algorithm with adaptive pruning. In the beginning,

the beamwidth is initialized to a value (Line 4).

Before token passing, the algorithm modifies the

pruning beamwidth according to the number of

active tokens, n(˜Qt). If the number of tokens is

greater than a threshold, τupper, a tighter beamwidth

is adopted. The beamwidth is decreased by a certain

amount denoted by δ (Lines 11–12). However, if the

number of active tokens is smaller than another

threshold, τlower, and also if the beamwidth is

tightened previously, the beamwidth will be relaxed

and its value will be increased by δ (Lines 13–16).

The rest of the algorithm is the same as the one

shown in Fig. 3.

 The proposed pruning scheme is more flexible

than the narrow and fixed pruning scheme. The

number of active tokens is often time varying in the

duration of an utterance. The fixed pruning scheme

applies a tight beamwidth throughout the entire

utterance regardless of the number of active tokens.

On the other hand, the adaptive scheme allows

relaxation of the beamwidth in parts of the utterance

where the workload is less heavy.

 Another conventional pruning technique is

called histogram pruning [27]. In histogram pruning,

the recognizer only allows at most a certain number

of active tokens to stay in the search space before the

next speech frame arrives. If the number isover the

allowable limit (for example, ˜N), the ˜N most

probable tokens remain active. Other tokens are

pruned. It can guarantee a real-time factor of below

1.00 for all the utterances. However, the major issue

with histogram pruning is that the recognizer will be

idle in some speech frames where the number of

active tokens is below the allowable limit. The idle

time cannot be distributed to those speech frames

which have a heavy workload (a large number of

active tokens). Consequently, less probable tokens in

these frames are pruned, resulting in a decrease in

word accuracy.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

5www.ijert.org

Fig. 6. Speech recognition algorithm with adaptive beam

pruning.

Fig. 7. Real-time factor of 1200 utterances in hardware–

software coprocessing system. Adaptive beam pruning versus

Fixed beam pruning.

 TABLE I

PERFORMANCE OF RECENTLY DEVELOPED

EMBEDDED SPEECH RECOGNITION SYSTEMS AND

OUR PROPOSED SYSTEM ON THE 993-WORD RM1

TASK

 In terms of implementation, the proposed

adaptive scheme is simpler than histogram pruning.

Implementing histogram pruning requires a sorted

list of the token scores. For each token, the

recognizer needs to perform an insertion sort which

involves searching for the token’s ranking in a sorted

list of the previously iterated token scores.

Maintaining the tokens in a sorted order is

computationally intensive. In contrast, the adaptive

pruning scheme only requires to record the number

of active tokens and a few decision-making

statements (if-statements) for adjusting the

beamwidth once for every speech frame (Lines 11–

17).

 B. Timing Profile

 Fig. 7 shows the real-time factor of the

coprocessing system. Fixed beam pruning and

adaptive beam pruning are compared. The

beamwidth is held constant at 170 for the fixed

beam-pruning scheme. In adaptive beam pruning, the

original_beamwidth variable is also set to 170. The

thresholds, τlower and τupper, are 1900 and 2300,

respectively. The beamwidth adjustment value is 10

(δ = 10). These parameters are determined

empirically. In the fixed beam-pruning scheme,

about 94% of the utterances have a real-time factor

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

6www.ijert.org

below one. When the adaptive beam-pruning scheme

is used, this percentage increases to 9.75%. Only 3

out of 1200 utterances have a real-time factor above

one. Compared with the fixed beam-pruning scheme,

there is a small degradation in recognition accuracy

which decreases from 93.33% to 93.16%.We have

also tried to tighten the adaptive pruning scheme by

adjusting τupper and τlower to smaller values (τupper

= 1700, τlower = 1250), so that the real-time factors

of all the utterances are below 1. The word accuracy

rate reduces to 92.62%.

 V. PERFORMANCE COMPARISON

 Table I compares the performance of our

proposed system with other existing systems. The

clock frequency of the proposed system is

determined by the maximum working frequency

(fmax) of the GMM accelerator which is 120 MHz.

The pure software-based systems require a higher

number of clock cycles for performing the same task.

As a result, a higher clock frequency is needed. On

the other hand, pure hardwarebased systems and

hardware–software coprocessing systems can run the

same task at lower clock frequency.

 As shown in the table, the word accuracy rate of

our proposed system is within the range of the other

systems. The proposed system performs better than

PocketSphinx [8] and In Silico Vox [10], [11]

systems. The AT&T system from [9] shows slightly

better word accuracy but the acoustic features are

stored in files and accessed by the StrongARM

platform from a PC. It suggests that the acoustic

features may not be generated by the StrongARM

platform. Therefore, in order to achieve the same

real-time factor including feature extraction, a tighter

beamwidth may be needed, which may decrease the

word accuracy.

 For the Seoul National University [13], [14]

system, the word accuracy rate is higher than the

other systems. However, their results are based on

only 300 utterances, whereas there are 1200 test

utterances in our experiments. The real-time factors

of the proposed system, as shown in Table III, are

calculated by dividing the total decoding time by the

speech duration of the entire test corpus. Table III

shows that the real-time factors of our proposed

system are well below 1.00, and they are much better

than those of the other reported systems.

 For many ASR applications, it is not necessary

to ensure that the real-time factors of all the

utterances are below 1.00 as the user can tolerate a

small time delay in machine response. However, for

more complex applications where the system needs

to perform multiple tasks with ASR, it will be

beneficial if ASR can be done as quickly as possible,

so that the remaining time can be used for other

tasks. As the real-time factors of our proposed

system are well below 1.00, it indicates that the

proposed system is more capable of multitasking

with ASR than other reported systems. The Seoul

National University system [13], [14] is also a

hardware–software coprocessing system. However,

the realtime factor of their system is not shown and

thus its timing performance cannot be compared with

our proposed system.

 VI. CONCLUSION

 The proposed ASR system shows much

better real-time factors than the other approaches

without decreasing the word accuracy rate. Other

advantages of the proposed approach include rapid

prototyping, flexibility in design modifications, and

ease of integrating ASR with other applications.

These advantages, both quantitative and qualitative,

suggest that the proposed coprocessing architecture

is an attractive approach for embedded ASR.

 The proposed GMM accelerator shows three

major improvements in comparison with another

coprocessing system [13], [14]. First, the proposed

accelerator is about four times faster by further

exploiting parallelism. Second, the proposed

accelerator uses a double-buffering scheme with a

smaller memory footprint, thus being more suitable

for larger vocabulary tasks. Third, no assumption is

made on the access pattern of the acoustic

parameters, whereas the accelerator in [13] and [14]

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

7www.ijert.org

has a predetermined set of parameters.

 Finally, we have presented a novel adaptive

pruning algorithm which further improves the real-

time factor. Compared with other conventional

pruning techniques, the proposed algorithm is more

flexible to deal with the time-varying number of

active tokens in an utterance. The performance of the

proposed system is sufficient for a wide range of

speech-controlled applications. For more complex

applications which involve multiple tasks working

with ASR, further improvement of timing

performance, for example, by accelerating the

Viterbi search algorithm, might be required.

 The proposed coprocessing architecture can

easily accommodate dditional hardware accelerators.

Aside from better word accuracy and timing

performance, power consumption is also another

important issue for embedded applications. The

proposed architecture is not tied to any specific

target technology. One of the future development

paths is to transfer the current implementation from

FPGA to very large scale integration which

consumes less power.

 Our future work includes some further

refinements of the speech recognition algorithm,

exploration of design space to look for

improvements of the hardware–software

coprocessing system, and encapsulation of the

speech recognizer into an intellectual property block

that can be easily used in other applications.

 REFERENCES

 [1] A. Green and K. Eklundh, ―Designing for

learnability in human–robot communication,‖ IEEE

Trans. Ind. Electron., vol. 50, no. 4, pp. 644–650,

Aug. 2003.

[2] M. Imai, T. Ono, and H. Ishiguro, ―Physical

relation and expression: Joint attention for human-

robot interaction,‖ IEEE Trans. Ind. Electron., vol.

50, no. 4, pp. 636–643, Aug. 2003.

[3] B. Jensen, N. Tomatis, L. Mayor, A. Drygajlo,

and R. Siegwart, ―Robots meet humans—Interaction

in public spaces,‖ IEEE Trans. Ind. Electron., vol.

52, no. 6, pp. 1530–1546, Dec. 2005.

[4] H. Lam and F. Leung, ―Design and training for

combinational neurallogic systems,‖ IEEE Trans.

Ind. Electron., vol. 54, no. 1, pp. 612–619, Feb.

2007.

[5] A. Chatterjee, K. Pulasinghe, K. Watanabe, and

K. Izumi, ―A particleswarm- optimized fuzzy-neural

network for voice-controlled robot systems,‖ IEEE

Trans. Ind. Electron., vol. 52, no. 6, pp. 1478–1489,

Dec. 2005.

 [6] N. Hataoka, Y. Obuchi, T. Mitamura, and E.

Nyberg, ―Robust speech dialog interface for car

telematics service,‖ in Proc. IEEE Consumer

Commun. Netw. Conf., 2004, pp. 331–335.

[7] K. Saeed and M. Nammous, ―A speech-and-

speaker identification system: Feature extraction,

description, and classification of speech-signal

image,‖ IEEE Trans. Ind. Electron., vol. 54, no. 2,

pp. 887–897, Apr. 2007.

[8] D. Huggins-Daines, M. Kumar, A. Chan, A.

Black, M. Ravishankar, and A. Rudnicky,

―Pocketsphinx: A free, real-time continuous speech

recognition system for hand-held devices,‖ in Proc.

ICASSP, 2006, pp. 185–188.

[9] E. Bocchieri and D. Blewett, ―A decoder for

LVCSR based on fixed-point arithmetic,‖ in Proc.

ICASSP, 2006, pp. 1113–1116.

[10] E. Lin, K. Yu, R. Rutenbar, and T. Chen,

―Moving speech recognition from software to

silicon: The In Silico Vox Project,‖ in Proc.

Interspeech, 2006, pp. 2346–2349.

[11] E. Lin, K. Yu, R. Rutenbar, and T. Chen, ―A

1000-word vocabulary, speaker-independent,

continuous livemode speech recognizer implemented

in a single FPGA,‖ in Proc. Int. Symp. Field-

Programmable Gate Arrays, 2007, pp. 60–68.

[12] J. Schuster, K. Gupta, R. Hoare, and A. Jones,

―Speech silicon: An FPGA architecture for real-time,

hidden Markov model based speech recognition,‖

EURASIP J. Embedded Syst., vol. 2006, no. 1, pp. 1–

19, Jan. 2006.

[13] H. Lim, K. You, and W. Sung, ―Design and

implementation of speech recognition on a softcore

based FPGA,‖ in Proc. ICASSP, 2006, pp. 1044–

1047.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

8www.ijert.org

[14] K. You, H. Lim, and W. Sung, ―Architectural

design and implementation of an FPGA softcore

based speech recognition system,‖ in Proc. 6th Int.

Workshop Syst. Chip Real Time Appl., 2006, pp. 50–

55.

[15] L. Rabiner, ―A tutorial on hidden Markov

models and selected applications in speech

recognition,‖ Proc. IEEE, vol. 77, no. 2, pp. 257–

286, Feb. 1989.

[16] S. Davis and P. Mermelstein, ―Comparison of

parametric representations for monosyllabic word

recognition in continuously spoken sentences,‖ IEEE

Trans. Acoust., Speech, Signal Process., vol. ASSP-

28, no. 4, pp. 357–366, Aug. 1980.

[17] M. Mohri, ―Finite-state transducers in language

and speech processing,‖ Comput. Linguist., vol. 23,

no. 2, pp. 269–311, Jun. 1997.

[18] F. Pereira and M. Riley, ―Speech recognition by

composition of weighted finite automata,‖ in Finite-

State Language Processing. Cambridge, MA: MIT

Press, 1997, pp. 431–453.

[19] M. Mohri, ―Weighted finite-state transducer

algorithms: An overview,‖ in Formal Languages and

Applications, vol. 148. Heidelberg, Germany:

Physica-Verlag, 2004, pp. 551–564.

[20] S. Young, N. Russell, and J. Thornton, Token

Passing: A Simple Conceptual Model for Connected

Speech Recognition Systems. Cambridge, U.K.: Eng.

Dept., Cambridge Univ., 1989.

[21] H. Ney, D. Mergel, A. Noll, and A. Paeseler, ―A

data-driven organization of the dynamic

programming beam search for continuous speech

recognition,‖ in Proc. ICASSP, 1987, pp. 833–836.

[22] H. Ney, R. Haeb-Umbach, B. Tran, and M.

Oerder, ―Improvements in beam search for 10000-

word continuous speech recognition,‖ in Proc.

ICASSP, 1992, pp. 9–12.

[23] S. Young, G. Evermann, M. Gales, T. Hain, D.

Kershaw, X. Liu, G.Moore, J. Odell, D. Ollason, D.

Povey, V. Valtchevnt, and P. Woodland, The HTK

Book (for HTK Version 3.4). Cambridge, U.K.: Eng.

Dept., Cambridge Univ., 2006.

[24] Nios II Processor Reference Handbook, Altera

Corp., San Jose, CA, 2006.

[25] Nios Development Board Reference Manual,

Stratix II Edition, Altera Corp., San Jose, CA, 2005.

[26] P. Price, W. Fisher, J. Bernstein, and D. Pallett,

―The DARPA 1000-word resource management

database for continuous speech recognition,‖ in

Proc. ICASSP, 1988, pp. 651–654.

[27] V. Steinbiss, B. Tran, and H. Ney,

―Improvements in beam se search,‖ in Proc. ICSLP,

1994, pp. 2143–2146.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 7, September - 2012

ISSN: 2278-0181

9www.ijert.org

