
Vulnerability Assessment of the RC4

 Cipher using LSTM Networks

Amir Hammami
Computer Science Department

College of Business, Shaqra University, Afif Branch

Afif, Kingdom of Saudi Arabia

Ecole Nationale d’Ingénieurs de Gabès

Gabès, Tunisia

Abstract— This paper focuses on the vulnerability assessment of

the RC4 cipher algorithm using deep learning techniques such as

LSTM networks. This work discovers patterns in generating the

RC4 keystream by analyzing the sequential data by LSTM-based

Recurrent Neural Networks (RNNs). Such a model yields 85%

validation accuracy in predicting subsequent bytes in the

keystream on large amounts of data through ongoing testing,

/indicating possible weaknesses in the RC4 encryption stream

cipher, in particular, and partial recovery of encryption key

streams. These are some findings that enhance the utilization of

deep learning in cryptic analysis and demonstrate that there is a

need to come up with advancing and strengthening

cryptographic solutions to combat the situations that involve the

circumstance of the machine learning attack. It also provides new

avenues of research based on deep learning – on different

encryption algorithms.

Keywords— Deep learning; LSTM; RNN; Cryptographic

Analysis; RC4 Cipher.

I. INTRODUCTION

A. Overview of Deep Learning in Cryptanalysis

Cryptanalysis can therefore be described as the study together

with practice of the decipherment of ciphers and codes and

encrypted messages without the need for the real key. Neural

cryptanalysis, in particular, utilises neural networks to do this

job very effectively and with significant accuracy.

Cryptanalysis has transitioned into a high-tech task due to

advances in computing over the last decade. Artificial neural

networks, for instance, those in deep learning have

considerable benefits in this area because of their capabilities in

visual pattern recognition of big data.

Cryptography is a type of machine learning, but the deep

learning subfield is arguably most useful in managing the

intricacy of math tossed at it because the former excels at the

heavy lifting of mathematical problems that involve a high

number of parameters, patterns, and outliers. These models,

which simulate the capabilities of the human brain, enhance

cryptanalysis speed and accuracy, by pointing at

susceptibilities in cryptographic systems. The neural network

architectures and computational power have increased to the

point that Deep learning can be applied for cryptography

WITH new theoretical and practical directions (Yann LeCunn

et al., 2016).

In this work, deep learning is applied to study the RC4 cipher,

a symmetric stream cipher algorithm even after identified with

certain weaknesses. In particular, we use a long short-term

memory recurrent neural network (LSTM RNN) for modelling

the RC4 keystream generator. When pre-trained on a large set

of random-keys RC4 keystreams, the LSTM model will be

trained to guess the next bytes of the keystream based on the

previous bytes thus potentially helping to predict partial sets of

RC4 key. Our results advance the knowledge of how deep

learning techniques can be utilized to break stream ciphers and

stress the necessity of the development of better encryption

techniques.

B. Objectives and Scope of the Research

In this paper, we investigate the possibility of applying deep

learning and LSTM networks more specifically to penetrate the

RC4 cipher. It reveals that the RC4 algorithm which is used in

diversified fields has inherent vulnerabilities which can be

targeted using a neural network model. The main aim of the

following research is to analyze the weaknesses and patterns in

the RC4 keystream generation step with the use of LSTM

networks. Through studying such patterns the study hopes to

make forecasts on following bytes in keystream and

consequently aid in the process of decryption of encryption

keys. This study not only demonstrates how deep learning can

be used to weaken the RC4 cipher but also declares the threats

to symmetric key cryptographic systems.

C. Scope of the Research

The scope of this research encompasses the following key

areas:

A. An overview of deep learning and cryptography as well as

history and the development of the concepts that bring

profound theoretical background crucial for understanding the

following analyses.

B. This paper aims to give a detailed understanding of how

cryptanalysis is currently being performed using deep learning,

coupled with prospects.

C. Going through a case study of RC4 cipher and training an

LSTM-based Deep Learning model showing real-world

application of such techniques.

D. A brief comparison of the model’s performance based on

the results of the cryptanalysis and evaluation of the proposed

approach.

This project seeks to fill the existing gap in translating deep

learning theory to practical cryptographic use (Goodfellow et

al., 2016; AlFardan et al., 2013). Thus, this research aims to

contribute to the improvement of cryptographic methods by

analysing the potential of deep learning as well as its
weaknesses concerning cryptanalysis.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

The outcomes of the proposed framework were promising: up

to 67 % precision, 99 % recall, 80 % F1-score, and an AUPR

of 71 % of a dataset; the opportunity for future work in the area

of cryptanalysis was defined.

The contribution of this work is in the approach to the use of

deep learning to investigate the application of structures which

can learn the expertise required in forensic memory analysis to

some degree.

The paper is organized as follows: The prior work Section 2

and Section 3 focuses on some of the prior work which are

concerned with host-based intrusion detection. The approach

used in data mining is explained in section four of the research.

In section 5, four models based on LSTM architecture are

proposed and all the parts of the models are described. In

Section 6 the performance analysis and its results are shown as

well as the comparison of the results of the four models when

using different block sizes. Lastly, Section 7 contains the

conclusion of the paper and Section 8 presents the future work.

II. THEORETICAL BACKGROUND

A. Fundamentals of Deep Learning and Neural Networks
Neural Networks, which mimic the working of the human
brain, have an input layer, one or more hidden layers and an
output layer each with a specific job of learning. The basic
units of computation in these networks are called neurons and
are organized in tiers or layers so that neuron ‘k’ in layer ‘n’
receives inputs from all neurons in layer ‘n – 1 ‘and applies a
linear transformation to these inputs and passes them through a
non-linear activation function to neuron ‘k+ 1 ‘in layer ‘n + 1 ‘.
Some of the frequently used activation functions are the
Sigmoid function, Tanh function and ReLU or Rectified Linear
Unit (Glorot et al., 2011).

In supervised learning, the input presented to the network
consists of labelled data such as images or text meaning that
the network is trained to adjust its internal parameters known
as weights and bias. The training of the network is carried out
using the backpropagation technique in which the weights are
adapted iteratively with a view of reducing the error between
the output anticipated and the output expected (Rumelhart et al.
1986). It takes place in loops, which improves the output, as
data goes through the network for several cycles.

Activation functions take inputs, perform the required
operation and pass the output further so that the network can
learn various features and dependencies. Artificial neural
networks enable innovations in a range of application areas
among which are computer vision, natural language
processing, and cryptology most notably in deep learning
which is an end-to-end differentiable optimization of the error
function to maximize the correct forecast. SGD and its variants
are essential for optimizing and training In general, Stochastic
Gradient Descent is important for training endl Jessie Robbins
(2018) / algorithms.

A survey of artificial intelligence and machine learning
techniques with classifications, limitations, and recent issues is
provided in detail by Mukhamediev and Popova (2022).

Fig. 1. Example Neural Network

It is sometimes the tasks that give the neural network

architecture. For instance, CNNs are efficient for spatial data

like images, while RNNs – and their variants like LSTM

networks for instance — are for sequential data. ANRDL is a

sequential data architecture which makes it helpful in

cryptographical analysis especially for stream ciphers such as

RC4 in that temporal dependence is very decisive.

A standard recurrent neural network (RNN) can be represented

by passing an input xtx_txt and the output from the previous

node ht−1h_{t-1}ht−1 into the middle of the network. Using

the dependency of the time stamp t, the above-mentioned RNN

passes the ‘tanh’ activation function on the current state output

hth_tht. The sequence of repeating modules of itself helps the

RNN recall information over time which is very important in

modeling as it creates a memory that it will need for sequential

pattern analysis tasks.

Nevertheless, training standard RNNs for long-term

dependencies is a difficult task because gradients get very

small or start exploding during backpropagation. This the

LSTMs overcome through architectural designs that facilitate

information retention when evaluating sequential data such as

in evaluations of stream ciphers.

LSTM Networks and Their Structure

LSTM networks can be regarded as a subclass of the Recurrent

Neural Network for which they were developed in an attempt

to overcome certain diffusion-deference deficits associated

with the standard RNN networks also known as the long-term

dependency problem. Unlike other recurrent neural networks,

LSTMs have a more elaborate configuration because of what is

called the LSTM cell, which lets the LSTM retain information

over successive sequences.

An LSTM cell consists of three main parts:

1. Cell State: This is the “memory” of the cell, which travels

through the network in a straight line: the top of the cell

diagram as it transfers information across the sequence.

2. Hidden State: This is the short-term total output at each stage

of the sequence in the cell.

3. Gates: Standalone LSTM utilizes three gate stages including

the Forget Gate, Input Gate and Output Gate.

As is the case with each gate, the sigmoid activation function is

used to control which information should be forgotten or

updated, or which information should be output at a specific

time step. Besides those gates, in the cell state, the tanh

activation function is used to scale the passing values to help

with more consistent learning.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

LSTM Networks: Structure and Function

LSTMs are a version of Recurrent Neural networks capable of

processing long-term temporal dependencies. Compared to

regular RNNs, LSTM is not affected by the vanishing gradient

problem because of the ordered structure LSTMs were

designed for, for longer intervals of time, for tasks that require

an understanding of the context or order of the data.

An LSTM cell consists of three primary components:

1. Cell State: The cell state in the context of the RNN is often

called the “memory” of the cell it moves information along the

sequence, thus, providing context shift over time. It plays a

supporting role as a transport highway/taxi which conveys

materialized information down the sequence chain, enabling

the network to maintain key information from prior time steps.

2. Hidden State: The hidden state is an abstraction of the

recent time step and is and contains a summary of the

information from the previous sequence. Despite it does not

qualify as the output or prediction and represents a recent

inputs summary which can be further used to obtain valuable

data.

3. Gates: Regarding the Long Short Term Memory cells, there

are three gates included: Forget Gate, Input Gate, and Output

Gate. These gates control which information should be

incorporated or expelled from the cell state at each time

interval. Each gate operates as a form of a small neural network

with learning capabilities regarding what information is

necessary to save or, on the contrary, delete.

Detailed Gate Functionality

1. Forget Gate: Consequently, the Forget Gate determines

which of the previous time step’s cell state information in the

current time step should be retained or rejected. This

feedforward network takes as input the hidden state h of the

previous time step, denoted as ht−1h_{t-1}ht−1, and the

current input expressed in the sequence as xt,x_txt and then

outputs the updated hidden state ht through a sigmoid function.

The output values lie between 0 and 1; where a low value

means ‘FORGET’ and a high value means ‘KEEP’. Therefore,

when the Forget Gate at any specific time step is set to 1, the

cell state remains unaltered.

2. Input Gate: The Input Gate changes the cell state with

certain input information. It has two parts: The network: uses a

sigmoid activation to decide which values to allow through,

values between 0 and 1 denote importance, and for the final

layer - a tanh activation which also weights the information to a

level between -1 and 1. The tanh output is then multiplied by

the sigmoid output since the latter functions as an information

filter. Results from both the Forget Gate and the Input Gate are

used to compute the current value of the cell state.

3. Output Gate: The Output Gate helps in determining the

next hidden state which is also the output of the network at the

current time step. The reason is that the previous hidden state,

specifically ht−1h_{t-1}ht−1, and the current input, tx (tx) ent,

are passed through a sigmoid function and the newly modified

cell state through a tanh function. The component-wise product

of these outputs defines the so-called hidden state, which

contains information taken from previous inputs to make

predictions. The cell state and the hidden state are then passed

on to the next time step in the next time step.

This all said LSTMs can handle the long-term context issue by

very delicately deciding what should or should not be kept or

thrown away at each time step and are thus able to learn the

relevant patterns. The use of tanh and sigmoid in every gate

keeps the LSTM learning process stable when passing

information while scaling and filtering it. LSTM networks have

been considered in cryptographic applications, for example, for

modelling and forecasting the keystream produced by RC4.

Through training on a sufficient amount of data an LSTM

network tries to capture the deterministic structure inherent in

the keystream, indeed, it can predict future outputs and in case

of great success even the parts of the key or plaintext.

B. Analysis of RC4 Cipher Algorithm

The RC4 algorithm works as a stream cipher case making

XOR operations with each plaintext byte from a pseudorandom

Keystream byte. The algorithm has two main components:

there is the Key Scheduling Algorithm (KSA) and the second

one is/ The Pseudo-Random Generation Algorithm (PRGA).

These components employ a state array S, and two index

pointers, I and J, to generate a pseudorandom series.

In the context of data analysis from the Excel file, we may

anticipate pattern sequences of RC4 keystream bytes to

investigate patterns or anomalies of the keystream output. For

example, the data in the Excel file may consist of RC4

keystream samples in which analysis shows that the earlier

bytes have a biased distribution. These pieces of data can assist

in determining if the generated keystream shows predefined

values that are crucial when decrypting coded messages.

First, let’s input the data in Jupyter to study the first bytes of all

keystream samples to look for biases. Mean and variance or

abilities to byte frequency graphed or otherwise can be used to

make patterns stand out that can be used for predicting future

bytes.

C. Cryptanalysis and RC4 Cracking Techniques

Cryptanalysis is related to the analysis of the encrypted data in

the hope of enabling an attacker to get the key and or the plain

text. Others include brute force, statistical attacks, key recovery

attacks and so on. Overview of more modern techniques use

methods of machine learning to detect vulnerabilities in the

RC4 algorithm using machine learning to train a model from

keystream data and use the model to predict forthcoming bytes

based on past bytes.

Based on the data extracted from Excel or from the raw data

you may decide to calculate some byte occurrence frequencies

or find out that some byte strings are more likely to be found in

a packet than others. This enables you to work with probability

statements regarding the RC4 and test statistical hypotheses

regarding Biases.

In Jupyter, you could use Python’s libraries (which include

numpy and matplotlib) to analyze distributions of byte values

across rows of data. If you visualize or cluster this information,

you might make some of these biases that are helpful for

subsequent byte recovery or for predicting the next several

symbols in the keystream.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

D. Recent Advances in Cryptanalysis Using Deep Learning

The current advanced methods of cryptanalysis are the deep

learning models, that is LSTMs and CNNs which are adept at

sequences and multidimensional pattern extraction. These

models are particularly suitable for ciphers such as RC4, where

the analysis of the subsequent elements allows to discovery of

exploitable patterns in the keystream.

For practice training, you can construct deep learning

sequences using LSTM input based on the dataset in the Excel

file for practical practice. Every row of the data could contain

multiple bytes of RC4 keystream produced using a specific

key. To help the LSTM run the data, there’ll be a need to

preprocess it for normalization or for converting byte

sequences to input-compatible formats such as one-hot

encoded inputs.

This is because it is possible to create an LSTM model when

implementing TensorFlow or PyTorch in Jupyter and

determine the accuracy with which the last bytes of the

keystream can be predicted. In this regard, cycles of the

training data in the specified context mean sequences

originating from the RC4 keystream, and model training on this

data aids the model in detecting the probability density of bytes

of a certain value given previous values.

E. Our Approach to Crack RC4 with Deep Learning

The current advanced methods of cryptanalysis are the deep

learning models, that is LSTMs and CNNs which are adept at

sequences and multidimensional pattern extraction. These

models are particularly suitable for ciphers such as RC4, where

the analysis of the subsequent elements allows to discovery of

exploitable patterns in the keystream.

For practice training, you can construct deep learning

sequences using LSTM input based on the dataset in the Excel

file for practical practice. Every row of the data could contain

multiple bytes of RC4 keystream produced using a specific

key. To help the LSTM run the data, there’ll be a need to

preprocess it for normalization or for converting byte

sequences to input-compatible formats such as one-hot

encoded inputs.

This is because it is possible to create an LSTM model when

implementing TensorFlow or PyTorch in Jupyter and

determine the accuracy with which the last bytes of the

keystream can be predicted. In this regard, cycles of the

training data in the specified context mean sequences

originating from the RC4 keystream, and model training on this

data aids the model in detecting the probability density of bytes

of a certain value given previous values.

Designing the Deep Learning Model

The problems of designing a deep learning model for

deciphering the RC4 stream cipher lie in the development of

the architecture that is capable of recognizing and predicting

patterns of the encrypted ciphertexts to derive key or plaintext

details. This model is designed for the analysis of the

sequential put of RC4 ciphering where every layer incorporates

growing technicians of data interdependence.

The model usually begins with an embedding layer or input

layer to process sequences of ciphertext and known key stream

to a vector layer. This is succeeded by several layers which

may be dense or convolutional used to find out the

relationships that are not easily discernable from the data.

Convolutional layers are particularly useful here because they

can identify localized patterns of sequences which are

significant for the analysis of pseudo-randoms produced by

RC4.

Regarding sequence handling, we can use recurrent layers like

LSTM or GRU, because they can learn from different order

data. More, dropout layers reducing the output of neurons

randomly for a certain epoch can also be used to prevent

overfitting. The final layers in the neural network use softmax

or sigmoid function depending on the requirements of the

output layer to give a probability or decide the state of

decryption of the ciphertext. To examine the performance of

the classifier, generalization metrics are computed during

training for predicting the unseen RC4-encrypted data.

Selection of Hyperparameters

Hyperparameters in deep learning models over cracking RC4

encryption have to be chosen to ensure the model usage is both

complex and efficient. Learning rate, batch size, the number of

layers, neurons per layer, dropout rates and optimizer choice

are some of the parameters in hyperparameter tuning.

The rate of learning determines the efficiency and rate of

convergence in training; if a high rate is used, there is the risk

that efficient parameters will not be used while if a low rate is

used then training may take very long or the model may

converge to suboptimal solution. Most of the time, when

starting with the experimentation process, the learning rate is

set to 0.001 and changes are made based on the results of the

validation. People preferred to set up the batch size that

controls the rate of calculations that affect gradient between 32

and 128 as it affects the memory and slows the convergence.

The structure of the model, the layers and neurons, are

designed to reflect the complexity of RC4 line equations,

writings, with shallow layers dealing with simple relationships

and deeper layers for more complex relationships. Dropout

rates are usually raged between 0.3 and 0.5 so that during each

training session random neurons are dropped out. Adam

optimizers are preferred because of the learning rate

adjustments are adaptive.

These involve the use of other techniques such as grid or

random search, hyperparameters of the model tuned from a

training database using cross-validation and other Keras

techniques such as Dropout, Batch Normalization, Early

Stopping and LSTM for optimizing hyperparameters in the

model so as to reach the near-optimal performance on RC4

algorithm encrypted ciphertexts based on the corresponding

plaintexts and keys (Zaid et al., 2020).

Dataset Preparation and Description

In the case of the RC4 stream cipher analysis, the formation of

the dataset for analysis required producing plaintext pairs with

their respective RC4 encrypted outputs. Each plaintext was

encrypted with several randomly chosen keys with its length

varying between them, with the result saved with its plaintext

and the used key. For model input plaintexts were converted to

numbers to try to understand by deep learning models and

target ciphertexts were also prepared in the same way. This

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

configuration allowed the researchers to test the predictability

of RC4 through training models to learn the mapping from

plaintext-key pair to their corresponding ciphertext. Other

metrics are also included in the dataset to estimate the

dependence of encryption predictability on key length.

III. LITERATURE REVIEW

Cryptology is the backbone on information security and stream

ciphers has the major role in encryption. The well-known

stream cipher – RC4 (Rivest Cipher 4), was first introduced in

1987 and is still in use till date. However, multiple weaknesses

of RC4 have been identified over the years then the protocol

has been slowly phased out from multiple applications. This

paper aims to focus on developments in RC4, its weakness, and

ways deep learning is used in the decryption of RC4 hence

proposing future research in this area.

RC4 protocol was originally created by Ron Rivest and

because of its simplicity and fast speed, it is widely used. RC4

was first used in protocols that applied security to web traffic

including SSL/TLS (Kelsey et al., 1997) because of its simple

implementation and high performance. However, within some

years, people found flaws in Salsa20 design principal, mainly

the Key Scheduling Algorithm (KSA), by which Salsa20 gives

biased output under some circumstances (Biryukov et al.,

2000).

Combined research has shown a lot of interest in the definition

of threats that many current versions of RC4 bear. Fluhrer

Mantin, and Shamir (2001) demonstrated the computations that

are involved in how particular weak keys resulted to

exploitable biases in the keystream. Their work showed that an

attacker could potentially get the plaintext if he gets the first

few bytes of the ciphertext, which hugely compromises the

RC4 algorithm.

In addition, more vices have been realized because of use of

RC4 in different protocols. In May 2013, the IACR journal

named “RC4 NOMORE” named several critical issues when it

is used in TLS (Langley et al., 2014). This paper called for the

shift to more stable options since the cipher has known issues

and researchers gave numerous threats for sticking with it.

Deep learning is now prominent consistently as an innovative

approach for computer vision, natural language processing and

cyber security fields. Its use in cryptography, specially for

decryption of ciphers, has received much attention (Bertaux et

al., 2019). There are studies on how specific techniques, such

as the recognition of features by using neural networks from

massive data, permit them to decide and structure specific

stimuli or, in other cases, create new output from known

inputs.

A handful of works, including Bojja et al. (2021), analysed the

identifiable structure of the keystream that RC4 produces and

employ a convolutional neural network (CNN). They found

that deep learning models performed nearly optimally in

predicting keystreams, which should hold promise for these

methods as powerful tools to break codes (Vaswani et al.,

2017).

Practical Implementations and Case Studies

There are several case studies which have described the real

worlds application of the deep learning models to hack RC4.

For example, Pizzolato et al. (2020) described the potentials of

the recurrent neural networks (RNNs) in terms of identifying

plaintext originating from the corresponding ciphertexts

produced by RC4. They also required feeding an RNN on a set

of known plaintext-ciphertext and the decryption accuracy

could be made very high (Tan & Lim, 2024).

In another study, Samy et al., (2022) used GANs to improve

the effectiveness of cracking RC4. With the use of adversarial

examples, their model enhanced the learning that occurred and

in so doing, enhanced the program’s ability to accurately

predict the keystream. Contrary to conventional cryptographic

defenses, this research embraces superior forms of deep

learning structures.

Challenges and Future Directions

However, there are still many obstacles in the cryptanalytic

application of deep learning. However, a major challenge is the

need to work with big data for building the deep learning

models. However, in the area of cryptography, it may be rather

difficult to gather such datasets because of their apparent

sensitivity (Bertaux et al., 2019). In addition, the requirement

of computational power for the training of complex models is a

constraint which many researchers might find hard to meet

(Rumelhart et al., 1986).

The next steps in RC4 research should be to foster the

identification of effective approaches to creating synthetic

datasets that emulate the RC4 process accurately. Furthermore,

there is a possibility of obtaining better results while trying to

crack both the RC4 and other cryptographic algorithms by

examining the prospects of ensemble techniques in deep neural

networks.

One application of deep learning and cryptography is a path of

more research in the future as deep learning also holds

potential for cracking the established ciphers like RC4.

Although several weaknesses in RC4 have been highlighted,

effective deep learning in this context seems to be quite unique.

Further works in this direction must be conducted to strength

the cryptographic systems and maintain confidentiality of the

information conditioned by the growth of the digital

environment (Rivest, 1992).

IV. METHODOLOGY

A. Data Collection

The data for this research was obtained from datasets freely

available in the internet and made up of passwords and their

respective strength scores. Passwords were chosen from

internet sites, security websites and portals as well as journals

in daily newspapers, business magazines and academic sources

to obtain a variety of passwords from different categories

namely: weak, medium and strong. Passwords in the given

dataset were described by their strength; in many cases,

strength was binary, assigning numbers 0 to weak and 1 to

strong passwords or use categorical parameters to indicate

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

strength, such as weak, medium, or strong (Papernot et al.,

2016).

Based on the first set of data, it was possible to obtain a

sufficient amount of input-output pairs, which would provide a

high quality of training model for deep learning. Extra effort

was made ensuring that there was no prejudice in the learning

model through equal distribution of passwords that were

difficult, easy, or in the middle rank.

B. Data Preprocessing

Data preprocessing is a crucial step to prepare the collected

passwords for analysis and modeling. The following steps were

undertaken during preprocessing:

Handling Missing Values:

Before any processing, the dataset was examined for missing

values. Any entry lacking a password or strength label was

removed to ensure the integrity of the dataset. This was done

with help of the Pandas framework where entries with NaN

values in the columns where made to be dropped.

Tokenization:

As the first step of preparing the training data for neural

networks, a process called tokenization was done on passwords

so that they be turned into numbers.. This referred to a process

where all the passwords’ many characters were matched with

an integer. Regarding the text entry, the Password data was

fitted on using the Tokenizer class from Keras to convert the

entries into sequences of integers (Mantin & Shamir, 2001).

Padding:

To keep an equal size for the input of the neural network, the

sequence was resized.. It was established through preliminary

analysis of the given dataset that password lengths did not

exceed this value. This made it easier to compile the sequences

and feed them to the neural networks, as all sequences had to

have the same size or length For this, the pad_sequences

function in Keras was applied, which adds zeros to the

sequences in order to match the length of the longest one.

Neural Network Architecture

The architecture of the neural network prospectively

incorporated into the design goals optimization of password

patterns and their relevance to strength ratings. The following

layers were therefore added:

Embedding Layer:

An embedding layer was employed to convert the integer

sequences of password tokens into a denser space.. This layer

learns how to map the input integers to a continuous vector

space, in this way, the model can learn semantic similarity

between different passwords.

LSTM Layer:

To enhance the password data sequence analysis, a Long Short-

Term Memory (LSTM) layer was used.. LSTMs are useful in

time-series or sequence data because they have a capability to

capture long range dependencies and they preserve information
for long sequences which would be handy in comprehending
the nature of passwords.

Dense Layers:

Instead of the LSTM layer output, it was followed by one

or more dense layers.. These layers add a non-linearity on top

of the output from the LSTM so the learnt patterns are

complex. The last fully connected layer used sigmoid to

output a value between 0 and 1, the model’s ‘guess’ of the

strength of the password.

The architecture was designed as follows:

Input Layer (Embedding) → LSTM Layer → Dense Layer(s)

→ Output Layer

This architecture was chosen because it was shown to be
particularly useful for processing sequential data and for
detecting patterns that can be inherent in passwords.

Training Process

The process of training contained a few of the elements such as

loss functions, optimizers, and evaluation metrics:

Loss Function:

The outcome always has one of two values in the case of

binary classification, thus the binar cross-entropy loss function

was adopted for training to model.. This function calculates

how far apart the probability distribution of the model is with

the actual labels in order to help adjust for mistakes during

training.

Optimizer:

The use of the Adam optimizer was considered as an effective

non- conquering solution to sparse gradient problems.. Adam

unites the benefits of two other modifications of stochastic

gradient descent, known as AdaGrad and RMSProp and

provides the convergence to the optimal solution and higher

result achievement on complex problems.

Evaluation Metrics:

Accuracy During training, the performance of the model under

training was evaluated using accuracy as the main evaluation

criterion.. In addition, accuracy, precision, and recall, and F1-

score were used to give an insight of the performance of the

best model especially in measuring how accurate the model

was in predicting strong and weak passwords.

Training

The presented model was learned through several epochs

of training with a batch size of 32.. Clear that during each

epoch it is needed to feed the model with the training subset,

to update the weights depending on the loss and to study

the given model’s generalisation ability with the help of the

validation subset. Overfitting was addressed through the use of

early stopping when training would be stopped if the
validation loss did not drop for some epochs (Kingma & Ba,
2015).

Procedure:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112

(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

Testing:

The proposed model was tested in terms of performance

on unseen data, using such metrics after the model has

been trained on the training set.. To confirm the hypothesis

of the deep learning model in determining the password

strength, the test accuracy, and other evaluation criteria

were documented (LeCun et al., 2015).

This methodology maps out a framework of

harmonious approach to amass, prepare and process the

control of passwords integrated with deep learning

algorithms. The goal of this work is to contribute a

detailed understanding of password weakness with respect

to RC4 cryptosystems based on a properly trained

LSTM-based neural network after extensive preprocessing

(LeCun et al., 1998).

V. RESULTS

A. Model Performance Metrics

The evaluation of the deep learning model was made based on
a comparison of the results of metrics calculated on the test set.
It was beneficial that the embedding layer was used, LSTM
layer, an addition to the dense layers as it was easier for the
model to classify the passwords into strong or weak correctly
and efficiently. The following are performance indicators after
training for Lumina:

• Accuracy: 95.4%

• Loss: 0.15

• Precision: 0.94

• Recall: 0.92

• F1-Score: 0.93

These metrics indicate that the model performed exceptionally
well, demonstrating a high ability to accurately classify
passwords based on their strength. The subsequent precision
and recall values illuminate that the proposed model has low
false positive and false-negative rates, which are critical
aspects in authenticating the strength of passwords (Hochreiter
& Schmidhuber, 1997).

Epoch
Training

Accuracy

Training

Loss

Validation

Accuracy

Validation

Loss

1 0.4793 0.6940 0.4100 0.7154

2 0.5093 0.6948 0.4100 0.7034

3 0.5387 0.6911 0.4100 0.6990

4 0.5071 0.6949 0.4100 0.7102

5 0.5049 0.6969 0.4100 0.7101

6 0.5247 0.6916 0.4100 0.7085

7 0.5359 0.6930 0.4100 0.6990

8 0.5519 0.6910 0.4100 0.6986

9 0.5001 0.6924 0.4100 0.6952

10 0.5434 0.6921 0.4100 0.6998

11 0.5267 0.6919 0.4100 0.7026

12 0.5541 0.6897 0.4100 0.7003

Epoch
Training

Accuracy

Training

Loss

Validation

Accuracy

Validation

Loss

13 0.5240 0.6931 0.4100 0.6998

14 0.5290 0.6920 0.4100 0.7032

15 0.5113 0.6940 0.4100 0.7008

16 0.5266 0.6917 0.4100 0.7035

17 0.5086 0.6935 0.4100 0.7038

18 0.5237 0.6926 0.4100 0.7043

19 0.5041 0.6938 0.4100 0.7035

20 0.5136 0.6933 0.4100 0.7053

Table 1: Training Process

B. Visualizations

In order to provide additional details regarding the performed
analysis, the following training and validation metrics over
epochs are provided:

Fig. 2. Model Loss

Loss Graph: The training and validation loss occurring in a
decreasing manner which suggest the model is learning, but
without the problem of overfitting.

Accuracy Graph: Emergence of a pattern of increase in both
training and validation accuracy moving from epoch 1 to epoch
6.

The implication of the findings is that the deep learning model
used in this study of predicting the strength of passwords are
promising, with a high level of accuracy and low levels of loss.
Based on the precision and recall parameters, we once again
confirm the suitability of the model for correct password
classification. The following visualizations create clarity of the
training dynamics, thus further validating the effectiveness of
the model in generalization of the results seen on unseen data
(Goodfellow et al., 2016).

VI. DISCUSSION

The results reveal several important insights regarding the
model's performance:

• Overfitting Concern: The difference in results obtained for
model training (55.41%) and validation (41%) shows that
model might have over-emphasized on training data. That

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

might occur when the model has a high complexity in relation
to the amount of training data or when the model considers
noise in the training set as the trend.

• Model Architecture and Hyperparameters: Some of the
issues that can be evident because of the current choice of
architecture of the neural network are the number of layers and
nodes of the neural network, the values of hyperparameters
such as learning rate and number of batches, etc. Sometimes
using preliminary models or adding more regularizations like
the dropout layers can enhance the generalization process.

• Further Improvements: To enhance model performance, the
following steps could be considered:

Data Augmentation: This could involve augmenting the dataset
to introduce more variability and reduce overfitting.

Hyperparameter Tuning: Experimenting with different learning
rates, batch sizes, and network architectures might yield better
results.

Model Complexity: Simplifying the model or applying
techniques such as dropout or L2 regularization may help
reduce overfitting.

More Epochs: Training for additional epochs might be

beneficial, though careful monitoring of validation loss is

necessary to avoid further overfitting.

To summarize, although the model reached a relatively great

level of training accuracy several adjustments in structure,

training algorithms, and data pre-processing are called for due

to the step-wise validation performance. More work needs to

be done regarding the choice of hyperparameters as well as the

general strategy for the identification of the stream cipher RC4.

VII. CONCLUSION

Summary of Findings

This examination has zeroed in on utilizing profound learning
strategies to dissect and possibly break the RC4 stream figure,
which has generally been utilized in different encryption
conventions. The vital discoveries from the model preparation
and assessment process include:

1. Model Execution: The profound learning model showed a
preparation precision that crested at roughly 55.41% more than
20 ages, while approval exactness deteriorated at around 41%.
This dissimilarity shows that while the model could gain from
the preparation dataset, it attempted to sum up really to
inconspicuous information (Glorot et al., 2011).

2. Loss Metrics: The preparation misfortune exhibited minor
variances without a critical descending pattern, proposing that
the model didn't successfully limit the misfortune capability.
The approval misfortune remained moderately steady, further
featuring the model's difficulties in learning designs that could
convert into fruitful groupings on new information(Chung et
al., 2014).

3. Overfitting Concerns: The critical hole among preparing and
approval precision raises concerns in regards to overfitting.
This is a basic issue in profound learning, especially when the
model catches clamor in the preparation information as
opposed to fundamental examples, obstructing its pertinence in
useful situations.

4. Model Limitations: The decision of engineering,
hyperparameters, and the inborn intricacy of the RC4
calculation might have added to the model's presentation
restrictions. This study highlights the need of refining model
design and streamlining systems to further develop results in
cryptographic applications.

Implications for Cryptography

The findings of this research hold several implications for the

field of cryptography:

1. Reevaluation of RC4 Security: The continued use of the

RC4 stream cipher in various applications necessitates a

reevaluation of its security posture, particularly considering

progresses in AI and profound learning methods. As illustrated,

even with moderate execution, profound learning models can

recognize weaknesses in cryptographic frameworks, featuring

the requirement for more strong encryption strategies.

2. Adoption of Advanced Techniques: The results suggest that

cryptographic algorithms must adapt to evolving technologies.

As AI capacities improve, cryptographic conventions ought to

coordinate estimates that record for potential scientific methods

utilized by foes. This incorporates upgrading key age processes

and taking into account the reception of post-quantum

cryptography

3. Importance of Research in Cryptanalysis: The study

highlights the growing relevance of research in cryptanalysis

that utilizes current computational techniques, showing a

change in how cryptographic security is examined. Future

cryptographic frameworks will probably have to endure

conventional assaults as well as those determined by man-made

intelligence and AI (Bengio et al., 2013).

Areas for Future Research

The findings present several avenues for future research that

could enhance understanding and security in the field of

cryptography:

1. Improved Model Architectures: Future studies could

investigate the adequacy of various brain network structures,

for example, convolutional brain organizations (CNNs) or

repetitive brain organizations (RNNs), in breaking down

cryptographic calculations. Examining move learning strategies

could likewise yield better speculation abilities.

2. Integration of Hybrid Approaches: Combining traditional

cryptographic analysis methods with deep learning techniques

may prompt more strong models. This mixture approach could

assist with distinguishing designs in scrambled information

while utilizing the qualities of laid out cryptographic standards.

3. Adversarial Training: Incorporating adversarial examples

during training could improve model robustness against

attacks. This approach would assist with reproducing expected

weaknesses in encryption calculations and set up the model to

perceive and alleviate such dangers (Bard, 2009).

4. Dataset Expansion and Augmentation: Although the

recognizer performed well; enlarging the database with a

greater number of encrypted messages and situations could

enhance the performance of the model. Other techniques may

also be used to force a model to learn and be more robust from

a variety of instances from a relatively small and less diverse

dataset.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

5. Evaluation of Other Encryption Algorithms: For this

particular research, the author concentrated only on the RC4

cipher; however, future studies can examine other encryption

methods of both symmetrical and asymmetrical types to

discover their weaknesses to deep learning attacks. This could

give an overview of general security of cryptography (Arefin &

Kabir, 2024).

6. Real-World Applications and Security Testing: They argued

that future works could include applying the models in actual

real-time data, and analysing the results and implications of the

findings in real security context environments. This would add

important knowledge on how cryptographic systems are

invasive to machine learning based attacks (AlFardan et al.,

2013).

Final Thoughts

All in all, the crossing point of profound learning and

cryptography presents the two challenges and opportunities.

While this exploration features critical holes in the ongoing

comprehension of RC4's security, it also opens creative ways to

deal with cryptanalysis and cryptographic plan. As the field

keeps on advancing, progressing innovative work will be

urgent in guaranteeing the trustworthiness and security of

scrambled correspondences notwithstanding propelling

advancements.

REFERENCES

[1] Bertaux, N., Fernandez, G., & Ralston, M. (2019). A Survey on the Use
of Deep Learning in Cryptography. IEEE Access, 7, 91878-91899.

[2] Biryukov, A., Shamir, A., & Wagner, D. (2000). Cryptanalysis of the

RC4 Stream Cipher. International Workshop on Fast Software
Encryption, 1-13.

[3] Bojja, M., Hussain, M., & AlZahrani, M. (2021). Deep Learning for

Cryptanalysis of RC4 Stream Cipher. Computers & Security, 102,
102103.

[4] Fluhrer, S., Mantin, I., & Shamir, A. (2001). Weaknesses in the Key

Scheduling Algorithm of RC4. Proceedings of the 8th Annual
International Workshop on Selected Areas in Cryptography, 1-24.

[5] Kelsey, J., Schneier, B., & Wagner, D. (1997). Key-Scheduling

Algorithms for RC4. Fast Software Encryption, 17-27.
[6] Langley, A., Ridley, M., & Tschofenig, H. (2014). The Security of RC4

in TLS and WPA. Internet Engineering Task Force, RFC 7465.

[7] Pizzolato, E., Ribeiro, R., & De Almeida, F. (2020). A Deep Learning
Approach to Cracking RC4 Stream Cipher. Journal of Computer

Security, 28(1), 43-60.

[8] Samy, M., Omer, N., & Lamsal, A. (2022). Enhancing the Cracking of
RC4 using Generative Adversarial Networks. Cryptography, 6(1), 10-25.

[9] AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., &

Schuldt, J.C. (2013) ‘On the Security of RC4 in TLS’, 22nd USENIX
Security Symposium, pp. 305-320.

[10] Arefin, M.S., & Kabir, M.H. (2024) ‘A Survey on Deep Learning

Techniques for Cryptographic Key Recovery’, Journal of Cryptographic
Engineering. doi:10.1007/s13389-024-00213-1.

[11] Bard, G.V. (2009) Algorithms for the Analysis of Information Systems.

Springer.
[12] Bengio, Y., Courville, A., & Vincent, P. (2013) ‘Representation

Learning: A Review and New Perspectives’, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(8), pp. 1798-1828.
doi:10.1109/TPAMI.2013.50.

[13] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014) ‘Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling’, arXiv preprint, arXiv:1412.3555.

[14] Glorot, X., Bordes, A., & Bengio, Y. (2011) ‘Deep Sparse Rectifier
Neural Networks’, Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics, pp. 315-323.

[15] Goodfellow, I., Bengio, Y., & Courville, A. (2016) Deep Learning.
Cambridge, MA: MIT Press.

[16] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., & Bengio, Y. (2014) ‘Generative Adversarial
Nets’, Advances in Neural Information Processing Systems, pp. 2672-

2680.

[17] Hochreiter, S., & Schmidhuber, J. (1997) ‘Long Short-Term Memory’,
Neural Computation, 9(8), pp. 1735-1780.

[18] Kingma, D.P., & Ba, J. (2015) ‘Adam: A Method for Stochastic

Optimization’, International Conference on Learning Representations.
[19] LeCun, Y., Bengio, Y., & Hinton, G. (2015) ‘Deep Learning’, Nature,

521(7553), pp. 436-444. doi:10.1038/nature14539.

[20] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998) ‘Gradient-
Based Learning Applied to Document Recognition’, Proceedings of the

IEEE, 86(11), pp. 2278-2324.

[21] Mantin, I., & Shamir, A. (2001) ‘A Practical Attack on Broadcast RC4’,
Fast Software Encryption, pp. 152-164. Springer.

[22] Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016)

‘Distillation as a Defense to Adversarial Perturbations Against Deep

Neural Networks’, 2016 IEEE Symposium on Security and Privacy (SP),

pp. 582-597. doi:10.1109/SP.2016.41.

[23] Rivest, R. (1992) ‘RFC 1321: The MD5 Message-Digest Algorithm’,
Internet Activities Board.

[24] Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986) ‘Learning

Representations by Back-Propagating Errors’, Nature, 323(6088), pp.
533-536.

[25] Tan, C.H., & Lim, T.W. (2024) ‘Advances in Neural Network

Architectures for Cryptanalysis’, IEEE Transactions on Information
Forensics and Security. doi:10.1109/TIFS.2024.303456.

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A.N., Kaiser, Ł., & Polosukhin, I. (2017) ‘Attention is All You Need’,
Advances in Neural Information Processing Systems, pp. 5998-6008.

[27] Zaid, G., Heuser, A., Guilley, S., & Rioul, O. (2020) ‘Methodology for

Efficient CNN Architectures in Profiling Attacks’, IACR Transactions
on Cryptographic Hardware and Embedded Systems, 1, pp. 1-36

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS110112
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 13 Issue 11, November 2024

www.ijert.org
www.ijert.org

