
Vulnerability Discovery with Attack Injection

Subbarao Gogulamudi 1M.Tech II year, Ch.Raj Jacob
Department of Computer Science & Engg, Head of the Department, CSE
Nova College of Engineering & Technology, Nova College of Engineering & Technology
Affiliated to JNTU Kakinada, Affiliated to JNTU Kakinada,

Abstract—The increasing reliance
put on networked computer systems
demands higher levels of
dependability. This is even more
relevant as new threats and forms of
attack are constantly being revealed,
compromising the security of
systems. This paper addresses this
problem by presenting an attack
injection methodology for the
automatic discovery of vulnerabilities
in software components. The
proposed methodology, implemented
in AJECT, follows an approach
similar to hackers and security
analysts to discover vulnerabilities in
network-connected servers. AJECT
uses a specification of the server’s
communication protocol and
predefined test case generation
algorithms to automatically create a
large number of attacks. Then, while
it injects these attacks through the
network, it monitors the execution of
the server in the target system and the
responses returned to the clients. The
observation of an unexpected
behavior suggests the presence of a
vulnerability that was triggered by
some particular attack (or group of
attacks). This attack can then be used
to reproduce the anomaly and to
assist the removal of the error. To
assess the usefulness of this approach,

several attack injection campaigns
were performed with 16 publicly
available POP and IMAP servers. The
results show that AJECT could
effectively be used to locate
vulnerabilities, even on well-known
servers tested throughout the years.
Index Terms—Testing and
debugging, software engineering, test
design, testing tools, experimental
evaluation, fault injection, attack
injection.

1 INTRODUCTION
 Our reliance on computer systems
for everyday life activities has increased
over the years, as more and more
tasks are accomplished with their help.
The advancements in software
development have provided us with an
increasing number of useful applications
with an ever-improving functionality.
These enhancements, however, are
achieved in most cases with larger and
more complex projects, which require
the coordination of several teams. Third
party software, such as COTS
components, is frequently utilized to
speed up development, even though in
many cases it is poorly documented and
supported. In the background, the ever-
present trade-off between thorough
testing and time to deployment affects the
quality of the software. These factors,
allied to the current development and
testing methodologies, have proven to
be inadequate and insufficient to
construct dependable soft-ware.
Everyday, new vulnerabilities are found in

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

1www.ijert.org

what was previously believed to be
secure applications, unlocking new risks
and security hazards that can be
exploited by malicious adversaries. The
paper describes an attack injection
methodology that can be used for
vulnerability detection and removal. It
mimics the behavior of an adversary by
injecting attacks against a target system
while inspecting its execution to determine
if any of the attacks has caused a failure.
The observation of some abnormal
behavior indicates that an attack was
successful in triggering an existing flaw.
After the identification of the problem,
traditional debugging techniques can be
employed, for instance, by examining the
application’s control flow while
processing the offending attacks, to locate
the origin of the vulnerability and to
proceed with its elimination.

To demonstrate the usefulness of our
approach, we have conducted 58 attack
injection experiments with 16 e-mail
servers running POP and IMAP services.
The main objective was to investigate if
AJECT could automatically discover
previously unknown vulnerabilities in
fully devel-oped and up-to-date server
applications. Although the number and
type of target applications was not
exhaustive, they are nevertheless a
representative sample of the universe of
the network servers. Our evaluation
confirmed that AJECT could find different
classes of vulnerabilities in five of the
servers, and assist the developers in their
removal by providing the test cases, that is,
the attack/ vulnerability/intrusion
syndromes. These experiments also lead to
other interesting conclusions. For instance,
we confirmed the expectation that complex
protocols are much more prone to
vulnerabilities than simpler ones since all
detected vulnerabilities were related to the
IMAP protocol.

Additionally, based on the 16 e-mail
servers, we found that closed source
applications appear to have a higher
predis-position to contain vulnerabilities
(none of the open source servers was
found vulnerable whereas 42 percent of
the closed source servers had problems).

2 USING ATTACKS TO FIND
VULNERABILITIES

Vulnerabilities are usually caused by
subtle anomalies that only emerge in such
unusual circumstances that were not even
contemplated in test design. They tend to
elude the traditional software testing
methods, mainly because con-ventional
test cases do not cover all of the obscure
and unexpected usage scenarios. Hence,
vulnerabilities are typically found either by
accident or by attackers or special tiger
teams (also called penetration testers) who
perform thorough security audits. The
typical process of manually searching for
new vulnerabilities is often slow and
tedious. Specifically, the source code must
be carefully scrutinized for security flaws
or the application has to be exhaustively
experimented with several kinds of input
(e.g., unusual and random data, or more
elaborate input based on previously known
exploits) looking for problems during its
execution.

3 THE ATTACK INJECTION
METHODOLOGY

The attack injection methodology adapts
and extends classical fault injection
techniques to look for security
vulnerabilities. The methodology can be a
useful asset in increasing the dependability
of computer systems because it addresses
the discovery of this elusive class of faults.
An attack injection tool implementing the
methodology mimics the behavior of an
external adversary that systematically
attacks a component, hereafter referred to

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

2www.ijert.org

as the target system, while monitoring its
behavior. An illustration of the main
actions that need to be performed by such
a tool is represented in Fig. 2.
4 THE ATTACK INJECTION TOOL

The attack injection methodology can be
applied to any type of component that we
wish to search for vulnerabilities. Several
implementations of this methodology
could be created to evaluate different types
of targets, from simple COTS components
to entire systems. In this study, we decided
to focus on network servers because, from
a security point of view, this is probably
the most interesting class of target
systems. First, these large and often
complex applications are designed to
sustain long periods of uninterrupted
operation and are usually accessible
through the Internet. Second, an intrusion
in a network server usually has a
significant impact since a corruption on
the server may compromise the security of
all clients (e.g., if the adversary gets a root
shell). Consequently, network servers are a
highly coveted target by malicious
hackers. The Attack inJECtion Tool
(AJECT) is a vulnerability detection tool
that implements the proposed
methodology. Its architecture and main
components can be seen in Fig. 3. The
architecture was developed to achieve
automatic injection of attacks
independently of the target server’s
implementation. Furthermore, it was built
to be flexible regarding the classes of
vulnerabilities that can be dis-covered and
the method used to monitor the target
system.

Fig. 3. The architecture of the AJECT tool.

4.1 Attack Generation Phase
The purpose of attack generation is to
create a series of attacks that can be
injected in the target system. The design of
the tool does not require the source code of
the server to be available to devise the
attacks. This allows AJECT to support a
larger number of target systems, such as
commercial servers. Instead, the tool
employs a specification of the
communication protocol of the server,
which, in practice, characterizes the
server’s external interface to the clients.
Therefore, by exploring the input space
defined by the protocol, it is possible to
exercise much of the intended
functionality of the target, i.e., the parts of
the code that are executed when
processing the clients’ requests. In contrast
to the source code, which is often
inaccessible, communication protocols
tend to be reasonably well documented, at
least for standard servers (e.g., the Internet
protocols produced by IETF).

4.1.1 Delimiter Test Definition
This specific type of test creates messages
with illegal or missing delimiters of a
field. For example, on text-based
protocols, each field is delimited by a
space character and, usually at the end of
the messages, there are carriage return and
line feed characters. The attack generation
algorithm cycles through all message
specifications of the protocol and
generates copies of each message with
small variations of their delimiters, such as
messages without one of the delimiters or
messages with some delimiters replaced by
a predefined set of illegal delimiter
characters. Note that, with the exception of
the delimiters, all generated messages will
contain only legal data taken from the
specification. Moreover, one can use any

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

3www.ijert.org

custom data to experiment with as illegal
delimiters.

4.1.2 Syntax Test Definition
This kind of test generates attacks that
infringe on the syntax of the protocol. The
currently implemented syntax violations
consist on the addition, elimination, or
reordering of each field of a correct
message. Note that, as with the previous
algorithm, the field specifications are kept
un-changed, i.e., they only hold valid
values. Like all other test definitions, after
generating new message specifications
(i.e., variations from the original ones),
each specification will result in several test
cases, each one trying a different
combination of possible field data.

As an example, consider a message
containing two different fields (e.g., a
command with one parameter) represented
as [A] [B]. Below are depicted some of the
variations of the original message
specification from which test cases are
going to be created:

. [A] (removed field [B]),

. [B] [B] (duplicated field [B]), and

. [B] [A] (swapped fields).

4.1.3 Value Test Definition
This test determines if the server can cope
with messages with bad data. For this
purpose, a mechanism is used to derive
illegal data from the message
specification, in particular, from each
field’s specified legal data. Ideally, one
would like to experiment with all possible
illegal values; however, this proves to be
unfeasible when dealing with a large
number of messages and fields with
arbitrary textual content. To overcome
such an impossibility, a heuristic method
was conceived to reduce the number
values that have to be tried (see
Pseudocode 1). The algorithm has the
following structure: All states and message
types of the protocol are traversed,

maximizing the protocol space; then each
test case is generated based on one
message type. This algorithm differs from
the others because it systematically
populates each field with wrong values,
instead of only resorting to the legal
values.
 Creating illegal words, however, is a
much more complex problem because
there are an infinite number of character
combinations, making such an exhaustive
approach impossible. Our objective was to
design a method to derive potentially
desirable illegal words, i.e., words that are
usually seen in exploits, such as large
strings or strange characters (see Pseudo
code 2, which is called in the under-lined
line of Pseudo code 1). Basically, this
method produces illegal words by
combining several tokens taken from two
special input files. One file holds
malicious tokens or known expressions,
collected from the exploit community,
piously defined by the operator of the tool
(see Fig. 7). AJECT expands the special
keyword $(PAYLOAD) with each line
taken from another file with payload data.
This payload file could be populated with
already generated random data, long
strings, strange characters, known

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

4www.ijert.org

usernames, and so on. The resulting data
combinations from both files are used to
define the illegal word fields.

5 EXPERIMENTAL FRAMEWORK

 This section provides the details about the
laboratory conditions in which the
experimental evaluation took place. It
includes a description of the network
server protocols that were specified and
tried with AJECT and the tested
configuration.
5.1 Network Server Protocols
The experimental evaluation was designed
to assess the advantages of using attack
injection to discover vulnerabilities in real
applications. For that purpose, we chose
fully developed and commonly used
standard protocols, POP3 [4] and
IMAP4Rev1 [5], instead of obscure or
immature proto-cols that are typically
implemented in applications with reduced
levels of testing and utilization. Therefore,
finding bugs in our targets will usually be
hard because applications have gone
through several revisions, where all
vulnerabilities had an opportunity to be
removed. Additionally, the selected
protocols are not overly complex, leading
to much simpler and less error-prone
implementations.

 Fig. 5. Finite state machine of the protocol POP3

5.1.1 POP Protocol
The Post Office Protocol (POP) is a widely
used protocol for e-mail retrieval. It was
designed to allow users without a
permanent connection to remotely view

and manipulate messages. POP3 servers
listen on port number 110 for incoming
connections, and use a reliable data stream
(TCP) to ensure the transfer of commands,
responses, and message data All
interactions between the client and the
server are in the form of text strings that
end with Carriage Return and Line Feed
(CRLF) characters. Client messages are
case-insensitive commands, with three or
four letters long, followed by the
respective parameters. Server replies are
prefixed with +OK or -ERR, indicating a
successful unsuccessful command
completion.

 7. AUTHORS

G.Subbarao1
received B.Sc degree
in Physics from
Acharya Nagarjuna
University, Guntur,
in 2006, received
M.C.A. Degree from
JNTU, Kakinada, in
2009, He is currently

pursuing M.Tech in
Computer Science &
Engineering at Nova
College of Engineering
&Technology,
Veagavarum which is
affiliated under JNTU
Kakinada. He published
one National Level
Conference Paper and
his areas of interests are
Networking & Data
Warehousing,
Software Engineering,
Operating systems.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

5www.ijert.org

 Mr.Ch.RajaJacob2, well
known Author
and excellent teacher
Received M.C.A
and M.Tech (CSE) from
Acharya Nagarjuna
university is workings as
Associate Professor and
HOD,Department of MCA,
M.Tech Computer Science

engineering, Nova College of Engineering and
Technology, He is An active member of ISTE. He
has 7Years of teaching experience in various
Engineering colleges. To his credit Couple of
publications both national and International
conferences /journals. His area of Interest includes
Data Warehouse and Data Mining, information
security, flavors of Unix Operating systems and
other advances in computer Applications
8 CONCLUSION

Our evaluation confirmed that AJECT
could detect different classes of
vulnerabilities in e-mail servers and assist
the developers in their removal by
providing the required test cases. The 16
servers chosen for the experiments were
fully patched and up-to-date applications
and most of them had gone through many
revisions, making them challenging
targets. In any case, AJECT successfully
discovered vulnerabilities in five servers,
which corresponded to 42 percent of all
tested commercial applications.

REFERENCES
[1] P. Verissimo, N. Neves, C. Cachin, J. Poritz,

D. Powell, Y. Deswarte, R. Stroud, and I.
Welch, “Intrusion-Tolerant Middle-ware: The
Road to Automatic Security,” IEEE Security
and Privacy, vol. 4, no. 4, pp. 54-62, July/Aug.
1996.

[2] B. Beizer, Software Testing Techniques,
second ed. Van Nostrand Reinhold, 1990.

[3] N. Neves, J. Antunes, M. Correia, P.
Verissimo, and R. Neves, “Using Attack
Injection to Discover New Vulnerabilities,”
Proc. Int’l Conf. Dependable Systems and
Networks, June 2006.

[4] J. Myers and M. Rose, “Post Office Protocol—
Version 3,” RFC 1939 (Standard), updated by
RFCs 1957, 2449, http://www.
ietf.org/rfc/rfc1939.txt, May 1996.

[5] M. Crispin, “Internet Message Access
Protocol—Version 4rev1,” Internet Eng. Task
Force, RFC 3501, Mar. 2003.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012

ISSN: 2278-0181

6www.ijert.org

