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Abstract—Now a days the expanse of biological sequence data
of the cancer genome upsurges exponentially, which calls for
effectual and current algorithms that may recognize patterns
hidden beneath the raw data which may distinguish cancer crisis.
From a signal processing idea, biological units including DNA and
protein sequences, have been viewed as one-dimensional signals.
Therefore, the signal processing techniques are used many
researches to find out the potentially important patterns within
these sequences. In recent years, wavelet transforms have become
a significant mathematical analysis tool, with a widespread and
ever increasing choice of applications. The adaptability of wavelet
analytic techniques has forged new interdisciplinary bounds by
presenting common solutions to apparently different problems
and providing a new unifying perspective on problems of cancer
genome research. In this paper, an empirical study of how
wavelet analysis is applied to cancer bioinformatics,that is to
identify the driver mutation in cancer genome. We evaluate the
effectiveness of the features computed using wavelet analysis
and in addition to the wavelet features, the amino acid index
(AAindex) features are also extracted.Proper combination of the
wavelet coefficient-based features with protein physicochemical
property-based features enhances the classification performance.

Index Terms—Cancer genome, driver mutation, wavelet anal-
ysis, AAindex.

I. INTRODUCTION

CANCER is one of the greatest medical causes of mor-
tality.It is liable for one in eight deaths worldwide. Critical
treads in developing systemic and local therapies for cancer
have been made possible from the increasing knowledge of
the human protein and the relevant genetic changes found in
tumors.

Cancer is an evolutionary process, all cancers are believed
to share a common pathogenesis. Each is the outcome of a
process of Darwinian evolution happening among cell popu-
lations within the microenvironments provided by the tissues
of a multicellular organism.Analogous to Darwinian evolution
happening in the origins of species, cancer development is
based on two integral processes, the continuous acquisition of
heritable genetic variation in individual cells by more-or-less
random mutation and natural selection acting on the resultant
phenotypic diversity.

At present, a generalizable concept of cancer states that
malignancies outcome from accumulated mutations in genes
that upsurge the fitness of a transformed cell over the cells

surrounding it. The transformed cells sometimes acquire a set
of sufficiently advantageous mutations that allow for unlim-
ited proliferation and these cells, thus, become transformed,
leading to malignancy. In addition, some cancer cells acquire
the capability to spread to distant sites, apparently through
the development of mutations, leading to metastases and
increased patient mortality.Mutations every so often occur in
genes encoding proteins, the natural building blocks of all
the components of the human body. Genes are determined
by four subunits of DNA that are preoccupied with in unique
sequences, as are the resulting proteins.

Current struggles to understand how mutations in DNA lead
to the development of cancers have been partly limited by the
overall inability to examine through the massive quantities of
data generated by cancer genome sequencing projects and the
studies of individual investigators. As a consequence, there
is a necessity for tools to parse through this large sum of
data to present relevant gene changes that may be serious for
either understanding how cancers develop or/and determining
how they could ultimately be treated. From the view point of
signal processing , biological sequences, consisting of DNA
and protein encoded data, could be viewed as one-dimensional
signals. As a result, signal processing approaches have been
applied to perform analysis on these types of data.

Section 2 describes related works in this
domain.Methodology is discussed in section 3. Section
4 gives detailed explanation of the proposed method.Paper
conclude in section 5.

II. RELATED WORK

The early work which identified the role of the genome
in the development of cancer dates back to the late 19th
and early 20th century. David von Hansemann and Theodor
Boveri examined dividing cancer cells under a microscope and
observed the presence of strange chromosomal aberrations[1].
These findings suggested that cancers could be related to
abnormalities in chromosomes, only found to be the rele-
vant hereditary material half a century later. Following the
discovery of DNA as the molecular substrate of inheritance,
significant research has ensued to understand the mechanisms
of cancer on a molecular level and to show that specific and
recurrent genomic abnormalities are associated with cancers.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181

Published by, www.ijert.org

NCETET - 2017 Conference Proceedings

Volume 5, Issue 16

Special Issue - 2017

1



  

  

 

  

 

 

  

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 

 
 

 

For example, as early as 1981, Reddy et al.[2] found that
the single base G > T substitution of the HRAS gene leads to
the activation of that specific oncogene function in T24 human
bladder carcinoma cells.

During the period of the sequencing of the human genome
(19902003), cancer researchers continued to accumulate
knowledge of the basic mechanisms of cancer, and using a
variety of clever cloning strategies, with steadily improving
sequencing capabilities, identified the majority of the most
potent oncogenes and tumor suppressors. An inventory of the
genes associated with cancer yielded 291 cancer genes based
on mutation data available in the literature: ;1% of the coding
sequence [3]. It was noted that 90% of these genes were
somatically mutated, 20% germline mutated, and 10% could
be found in both categories. The division between germline
and somatic genes is a mysterious dichotomy that remains
unexplained in the most current inventory The most common
form of variation in the 2004 inventory was translocation
leading to the production of oncogenic fusion proteins. Until
2004, no one had studied more than a handful of genes at any
one time in a single patient.

That was the state of cancer genomic research at the thresh-
old of the genomic era of cancer research: an era heralded
by the availability of the high-quality reference genome, and
the dramatic explosion of DNA sequence data fueled by the
introduction of inexpensive massively parallel sequencing in-
struments. This year is the 10th anniversary of the completion
of that remarkable milestone in sciencethe completion of the
reference human genome. At this juncture, we recapitulate
some of the key findings and challenges that have emerged
from the sequence analysis of the cancer genome.

With base-level resolution of the human reference genome
in hand, cancer researchers turned to the large-scale study of
mutation, with the promise of generating the entire catalog of
mutations peculiar to a given disease as well as to a single
patient. Figure 1 tracks the development of some of the key
technologies, resources, and milestones in the development of
the present-day armamentarium of cancer mutation discovery.
Massively parallel sequencing was introduced by Roche 454
and Illumina in 20042006 and soon demonstrated the feasi-
bility of sequencing complete normal and tumor genomes of
exemplar human subjects on both platforms [4]. At the time,
it appeared that the application of whole-genome sequencing
to routine research and clinical diagnosis might be on the
horizon. Although the use of whole-genome sequence (WGS)
is far from routine today, the results generated so far are
lending insight into the potential of WGS for diagnostic,
prognostic, and therapeutic improvement in the treatment of
cancer patients.

Using PCR and dye-terminator sequencing, Vogelstein and
colleagues amplified and sequenced each coding exon of
18,000 genes, defined by the human genome sequence, in 11
each of breast and colorectal tumors [5]. This brute force
whole-exome sequencing (WES) approach afforded for the
first time a comprehensive view of the mutation profile of each
patient, which, when summed across patients, revealed the

cancer genes for the patients in the given cohort. In one stroke,
the mutation profile, composed of recurrently mutated genes,
plus a collection of one-off mutations belonging to pathways
and processes known to be involved in tumorigenesis, were
revealed for a cancer. The fact that the most frequently
mutated genes they observed, APC, TP53, and KRAS for
colon cancer and TP53 for breast cancer, recapitulated what
was already known, validated the approach and paved the way
for expanded application of genome-scale sequencing.

Fig. 1. MAJOR EVENTS IN A DECADE OF CANCER GENOMICS.(Dark
blue) Major advances in massively parallel sequencing platforms and targeted
enrichment technologies; (black) major large-scale projects designed to cata-
log genomic variations of normal human individuals; (red) cancer genomics.
(dbSNP) Database of single nucleotide polymorphism; (HapMap) haplotype
map of the human genome; (ENCODE) Encyclopedia of DNA Elements;
(COSMIC) Catalog of Somatic Mutations in Cancer; (TCGA) The Cancer
Genome Atlas; (GA) genome analyzer; (CRC) colorectal carcinoma; (WES)
wholeexome sequencing; (ICGC) International Cancer Genome Consortium;
(TSP) tumor sequencing project; (AML) acute myeloid leukemia; (WGS)
wholegenome sequencing; (OSCC) ovarian small cell carcinoma.

The introduction of DNA sequence enrichment technologies
from NimbleGen and Agilent [6] enabled WES on large scales.
WES has additional advantages over WGS in that the average
depth of coverage is about fivefold greater, and the cost of
sequencing, data processing and storage are all much less.
Given the relative tractability of interpreting variation in the
coding sequence compared to intergenic or intronic mutations,
the period between 2004 and 2013 has seen a profusion
of tumor types analyzed in large cohorts (100500 patients),
mainly byWES. WGS for a variety of tumors has also been
reported and, in spite of the smaller numbers of patients, has
led to surprising insights into cancer biology, based largely on
analysis of structural variation in tumor genomes. Using WGS,
genetic alterations observed in the DNA of the cancer cell
span six orders of magnitude, from single-base point mutations
to chromosome-scale amplification, using different modes of
sequence analysis [7] available today.

III. METHODOLOGY

The main objective of this work was to classify the driver
mutation.In order to fulfill our purpose, our proposed frame-
work firstly several features are extracted and the SVM was
applied in order to recognize diver mutation.
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TABLE I
THE COMPLEX REPRESENTATION OF 20 AMINO ACIDS

Amino Acid Name Symbol Complex Number Repr.
Alanine A 0.61 + 88.3i
Arginine R 0.60 + 181.3i

Asparagine N 0.06 + 125.1i
Aspartic D 0.46 + 110.8i
Cysteine C 1.07 + 112.4i
Glutamic E 0.47 + 140.5i
Glutamine Q 148.7i

Glycine G 0.07 + 60.0i
Histidine H 0.61 + 152.6i
Isoleucine I 2.22 + 168.5i
Leucine L 1.53 + 168.5i
Lysine K 1.15 + 175.6i

Methionine M 1.18 + 162.2i
Phenylalanine F 2.02 + 189.0i

Proline P 1.95 + 122.2i
Serine S 0.05 + 118.2i

Theronine T 0.05 + 118.2i
Triptophan W 2.65 + 227.0i
Tyrosine Y 1.88 + 193.0i
Valine V 1.32 + 141.4i

A. Numerical Representation

For further analysis of biological sequences they need to
be encoded in a suitable format. Then the input biological
sequences can be processed as signals and signal processing
techniques such as wavelets can be utilized to extract hidden
features out of these sequences. The encoding process is a
kind of numerical substitution for each character symbols that
forms the biological sequence.

Using these encoding process two types of biological se-
quences such as DNA nucleotide sequences and protein amino
acid sequences can be successfully mapped to required formats
for processing. DNA sequence is easier compared with protein
sequences for encoding since only 4 character symbols are
there with DNA sequences where proteins are represented
with 20 amino acids.It can been successfully used in cancer
research to classify driver genes and passenger genes

The original amino acids in the protein sequence are con-
verted to numerical representation each amino acid using the
complex number representation with the real part and imagi-
nary part representing different properties of the amino acid.
For example, a complex number representation approach was
proposed in [8], where the hydrophobicity is the real part and
the residue volume is the imaginary part. In this experiment,
only the real component of the complex representation is used
and the mapping scheme is shown in Table 1.

B. Wavelet Analysis

Jean Batiste Joseph Fourier, a French mathematician de-
veloped the concept of Fourier Trignometric series. Through
this concept he represented a periodic function in terms
of a weighted sum of cosine and sine functions. This was
considered as the origin of wavelets theory. In 1909 Alfred
Haar developed Haar Wavelets family which is considered the
simplest wavelets. Compared with harmonic functions used
in Fourier analysis, wavelets can be used to analyze a given

signal in terms of functions that are more finite in time. One of
the important property of the Haar wavelets which gave wide
acceptance across the globe was the scaling property which
give more accurate results in modeling functions. The idea of
multiresolution, which is the base theory of versatile wavelets
families, was proposed[9]. Using this multiresolution concept,
Daubechies [10] created the most frequently used Daubechies
wavelets family.This is evident from the above statements that
the wavelet theory originated from Fourier Transform.

Fourier Transform is one way to find frequency content
and measure the signal composition in frequency. Fourier
Transform can be calculated using equation(1). Here F is the
frequency in Hertz and Ωt is the phase in radians:

FT{x(t)} = x(Ω) =

∫ ∞
−∞

x(t)e−jΩtdt,Ω = 2πF. (1)

The FT defines the global representation of the frequency
content of a signal over a total period of time. However, it
does not give access to the signals spectral variations during
this interval of time. In other words, the time and frequency
information cannot be seen at the same time, and thus, a time-
frequency representation of the signal is needed. Gabor pro-
posed the STFT to analyze only a small section of the signal at
a time by using a technique called windowing the signal. This
obtains the specific contents of each of the analyzed sections
separately. The segment of signals in each section is assumed
stationary. Let g(t) be the sliding window of a fixed size.STFT
is defined in (2), where g(t−b)e−jΩt = ∗

Ω,b(t)is the complex
conjugate of Ω,b(t):

STFTg(Ω,b){x(t)} =

∫ ∞
−∞

x(t)g(t− b)e−jωtdt = Xg(ω, b).

(2)

One of the limitations of STFT is due to the fixed size
window used. A narrow window and wide window results in
poor frequency resolution and poor time resolution respec-
tively. Also it is really difficult to determine the time intervals
where a particular frequency exists. Thus wavelet transform
was proposed to get rid of these problems as an alternative to
STFT. The definition of continuous wavelet transform is given
below :

CWTx (a, b) = X (a, b)

=
1√
a

∫ ∞
−∞

x(t)[ ∗(
t− b
a

)]dt

= 〈x(t), ψ∗a,b(t)〉

(3)

here a and b are the scaling and translation parameters,

respectively, and ∗
a,b(t) =

1√
a
∗(
t− b
a

) is the mother

wavelet (base function), a prototype for generating the other
window functions.

In summary, wavelet analysis techniques outrun the tradi-
tional FT in the following perspectives[11]:
• wavelets are suitable for analysis on both stationary and

nonstationary signals where FT is less useful in analyzing
nonstationary signals;
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• wavelets are well localized in both time and frequency
domains, where the standard FT is localized in frequency
domain only;

• the base functions of wavelets can both be scaled and
shifted, while the FT can only be scaled; and

• wavelets have solid mathematics foundation and a wider
range of applications than FT such as nonlinear regression
and compression.

Wavelet families generally belong to one of the following
types.
• Orthogonal wavelets with scaling finite impulse responses

(FIR) filters. These wavelets are defined through a low-
pass scaling filter. Predefined families of such wavelets
include: Haar, Daubechies, Coiflets, and Symlets.

• Biorthogonal wavelets with scaling finite impulse re-
sponses filters. These wavelets are defined through two
scaling filters, for reconstruction and decomposition, re-
spectively. The BiorSplines wavelet family is an example
of a predefined family of this type.

• Wavelets with scaling function. These wavelets are de-
fined using a wavelet function, the mother wavelet, and a
scaling function, the father wavelet, in the time domain.
The Meyer wavelet family is a predefined family of this
type.

• Wavelets without scaling filters and without scaling func-
tion. These wavelets are defined through the definition
of the wavelet function. The wavelet has a time-domain
representation only. Predefined families of such wavelets
include Morlet and Mexican hat.

C. AAindex Features

In addition to the wavelet features, 566 amino acid index
(AAindex) features[12] that represent the physicochemical
properties of the proteins are also extracted from the database
AAindex.

Protein structures and functions are defined by the combi-
nations of physicochemical and biochemical properties of 20
naturally occurring amino acids that are the building-blocks
of proteins. A wide variety of properties of amino acids have
been investigated through a large number of experiments and
theoretical studies. Each of these amino acid properties that
can be represented by a set of 20 numerical values is referred
to as an amino acid index.

The AAIndex currently contains 566 amino acid indices.
Each entry consists of an accession number, a short description
of the index, the reference information and the numerical
values for the properties of 20 amino acids.

IV. PROPOSED METHOD

In this section,we discuss our work in which the wavelet
analysis is applied to solve our important problem in cancer
genome which is the identification of ”driver” mutation.

A. Classifying the ”Driver” and ”Passenger”

As described above section 1., genetic mutation are respon-
sible for the cancer.These mutations could be classified into

drive mutations and passenger mutations. Driver mutations
confer growth benefits on the cells carrying them and have
been positively selected during the evolution of the cancer.
They usually donate to tumorigenic potential. On the other
hand, the passenger mutations do not confer growth advantage
and happen to be present in the ancestor of the cancer cell
when it obtains one of its drivers. Therefore, the passenger
mutation are generally neutral and are not eventually respon-
sible for any pathogenic characteristics exhibited by the tumor.
Since driver mutations are causally concerned in oncogenesis,
one of the central goals of current cancer genome analysis is
the identification of cancer genes that carry driver mutations.
To complicate this issue, recent sys tematic resequencing of
the kinome of cancer cell lines has revealed that passenger
mutations are much more common equated to driver mutations
[13]. In addition, some mutational processes are directed
at specific genomic regions and, thus, generate clusters of
passenger mutations that may be mistaken for drivers [1]. All
of these experimental explanations make the differentiation a
challenging research topic.

This delinquent could be addressed by biological experi-
ments to a certain degree, given the number of mutations is
relatively small. However, with thousands of mutations in the
cancer cell line, it would be significant to prioritize experi-
mental work with the hope that the driver mutations could
be specially identified over passenger mutations. Therefore,
a computational algorithm for automatically categorizing the
aforementioned two types of mutations is needed.

Wavelet analysis and AAindex features can be applied
to represent the DNA sequence to generate the sequence-
based features, since wavelet analysis provides multiresolution
information about the sequence, which is usually missing in
the primary features generated from the sequence data and the
AAindex features captures the global features of the protein.
Therefore, wavelet analysis combined with AAindex features
,machine learning and data mining approaches can provide
promising solutions to the problem of differentiating the genes,
which harbor the driver mutations with the genes that carry
passenger mutations. In this empirical study, we propose to
apply wavelet analysis along with AAindex features to the
DNA sequence or protein sequence. In addition, such an anal-
ysis method does not require homology analysis. Therefore,
this approach can be applied to a high-throughput system
and applied to uncharacterized genes that do not show any
homology to known sequences.

B. Computational Framework

Fig. 2 displays the architecture of the framework. Main,
the driver and passenger genes are collected from existing
knowledge and downloaded from GenBank [14]. Next, the
mutation samples are extracted according to the mutation
location on the corresponding protein sequences, and those
samples are represented by numerical numbers according to a
certain mapping scheme. Then, wavelet transforms are applied
to the mutation samples to obtain original wavelet coefficients
at different scales, which are sampled and converted to feature
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Fig. 2. THE FRAMEWORK FOR DRIVER GENE IDENTIFICATION.

vectors. Finally, a classification technique, SVM-based classi-
fier, is applied to classify the driver and passenger mutations.
The details are discussed as follows:

Fig. 3. MUTATION SAMPLE EXTRACTION.

• Data collection. We collect 29 driver genes and 58
passenger genes from the published papers and COSMIC
database [14]. Based on those genes, 40 driver mutation
samples and 39 passenger mutation samples are extracted.

• Mutation sample extraction. The mutation samples are
extracted from the original protein sequence based on
the mutation location using a fixed window size. To
be specific, a window size of 100 is used to extract
the mutation sample centered at mutation spot i. The
mutation sample extraction scheme is illustrated in Fig.
3.

• Numerical representation. The original amino acids are
converted to numerical numbers based on the mapping
scheme in Table 1. In this experiment, only the real
component of the complex representation is used.

• Wavelet analysis. The Matlab wavelet toolbox provides
a powerful tool for wavelet analysis. In the current
experiment, the continuous wavelet transform based on
Daubechies wavelets function is used to extract wavelet
coefficients from mutation samples. (The Daubechies
wavelets are chosen due to their successful applications
in biological sequences analysis [11], [15].) Based on the
results of the study, the differences between the wavelet
coefficients before and after the mutation are more sig-
nificant at the scale levels 2 through 100. Therefore, the
scales are set to be 2:2:100, where the second 2 represents
a sampling step of 2. The obtained COEFS are a 50 by
100 matrix, where each row is a coefficient sequence at a
specific scale. The averages of the rows of the coefficients
in the matrix are calculated to obtain a 100-dimensional
feature vector.

• Sequence-based protein features. In addition to the
wavelet features, the amino acid index (AAindex) features
[11] that represent the physicochemical properties of the
proteins are also extracted.

• Support vector machine. The LIBSVM package is one of
the most popular off-the-shelf classifiers. In this study,
the LIBSVM classifier is utilized as the classification
model.Here we also experimented Naive Bayes Classifier
but LIBSVM is more accurate than bayes classifier .Table
2 show there accuracy of classfication.

TABLE II
CLASSIFIER AND THEIR ACCURACY.

Classifier Accuracy
LIBSVM 0.941
Naive Bayes Classifier 0.91

• Evaluation. In terms of evaluation, the Accuracy, F1,
and Matthews correlation coefficient (MCC) performance
metrics are used. Here, TP is the total number of true-
positive instances, TN is the total number of true-negative
instances, FP is the total number of false-positive in-
stances, and FN is the total number of false-negative
instances. In addition, MCC ranges from -1 to 1. A value
of MCC = 1 indicates the best possible prediction; while
MCC = -1 indicates the worst possible prediction. MCC
= 0 is expected for a random prediction scheme. The
equations for different criteria are shown below:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

F1 =
2 · TP

TP + FP
· TP

TP + FN
TP

TP + FP
+

TP

TP + FN

(5)

MCC =
TP · TN − FP · FN√

(TP + FP )(TN + FN)(TP + FN)(TN + FP )
(6)
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TABLE III
FEATURE SET AND ITS SIZE.

Group Sl. No Features Feature Size
Step 1

1 Daubechies wavelets 100
2 AAindex 566

Step 2
3 AAindex + Daubechies

wavelets
666

TABLE IV
DIFFERENT VALUES FOR FEATURE SET

Group
Sl. No

Method Accuracy F1 MCC

Step 1
1 3-fold cross validation 0.778302 0.618474 0.559625

2 3-fold cross validation 0.858491 0.628378 0.717492

Step 2
3 3-fold cross validation 0.859774 0.628986 0.707831

V. EXPERIMANTAL RESULTS

One experiments are conducted to evaluate the contributions
and characteristics of three different groups of features. Table
3 shows the group IDs and their corresponding features.
The LIBSVM classifier is utilized to evaluate those different
groups of features.The threefold cross validation is used in the
experiment.

From the experimental results shown in the Table 4, it
could be seen that the AAindex features (Group 2)outperform
the Daubechies wavelet features (Group 1). The reasons are
as follows: First, the dimension of the AAindex features is
566 but the Daubechies wavelet features are only of 100
dimensions respectively. The AAindex features contain more
information. In addition, each dimension of the AAindex
features represents one kind of physiochemical properties.The
two SVM parameters C and γ are tuned using grid search.

AAindex feature, which captures the global feature of the
protein sequence loses all the information about the sequence
position. However, the sequence of the protein also determines
the properties of the proteins. The wavelet-based features
capture the sequence or the temporal information of the
proteins and complement the AAindex features.

TABLE V
COMPARISON B/W EXISTING AND PROPOSED SYSTEM.

Method Accuracy

Existing Method 0.8389

Proposed Method 0.859774

VI. CONCLUSION

We did an study,that show a proper combination of
wavelet coefficient-based features with protein physicochem-
ical property-based features enhance the classification per-

Fig. 4. ROC CURVE WHEN AAINDEX AND WAVELET FEATURES ARE
SELECTED

formance. Conversely, the choice of the wavelet transform
approaches could affect the performance and should be given
careful attention. In summary, the application of wavelets to
cancer research by the work, will serve as a foundation for
future wavelet research in carcinogenesis.

In future, the most imperative task is to enhance the numer-
ical representation of the protein sequence and the scheme
of applying the wavelet transform. Other wavelet transforms,
such as Morlet, Mexican Hat, and Meyer, can be used and
the detailed comparison of the performance of using different
wavelet-based features shouldl be conducted. As a novel
approach of representing the protein amino acid sequence
information, wavelet based features can also be compared with
the existing sequence information representation methods such
as the well-recognized Chous pseudo amino acid composition.
In addition, another research direction is to integrate infor-
mation gained from applying wavelet analysis on microarray
images.
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