
Web Development with Secure HTML5

Coding Practices

Madhuri N. Gedam
Research Scholar: Department of Computer Engineering

Veermata Jijabai Technological Institute (VJTI)

Mumbai, India

Bandu B. Meshram

Professor, Department of Computer Engineering

 Veermata Jijabai Technological Institute (VJTI)

Mumbai, India

Abstract—Due to a rapid increase in the web application’s

demands, its security is of prime importance throughout the

development lifecycle emphasizing the protection of user data

and fostering trustworthiness. Web development using the

HTML5 framework and its powerful APIs such as Web Storage

API, WebSockets, geolocation, local storage, and File API has

emerged as a substitute for vulnerable additional plug-ins such as

ActiveX, Flash, and Silverlight. This paper is focused on finding

vulnerabilities and attacks in HTML5 and its APIs and provided

the defense mechanisms to develop secure, robust, and reliable

web development.

Keywords— HTML5; Web Application Development; SQLI;

XSS; CSRF; Web Socket

I. INTRODUCTION

In today's cyber age, web applications serve as the main
entry points for most businesses and are insecure by default.
Many individuals and organizations rely on websites for many
real-life applications [3]. Due to non-adherence to secure
coding standards and practices by developers, the systems
remain vulnerable to attacks by hackers [3][11]. Web
Applications are the gateways for most businesses in today’s
cyber era. Different technologies and programming languages
are used for developing these web applications. State-of-the-
art software technologies incorporate a security framework that
allows software developers to include security features in web
applications [5][6].

HTML is a markup language that combines hypertext with
markup and is used to create web pages. HTML5, the latest
version of HTML, enhances markup, and introduces APIs and
DOM. The dynamic operation on the websites can be
performed using plug-ins like ActiveX and Flash. Attackers
prefer to use plug-ins, which slow down websites, to attempt an
attack. HTML5 supports some new APIs and replaces plug-ins
in website creation but has side effects and potential attack
methods [11].

Ensuring security is a fundamental aspect when designing
any system. The introduction of server-side languages brought
about new security concerns as web servers became susceptible
to vulnerabilities. As blogging and web services gained
popularity, web applications became prime targets for
attackers. Consequently, various novel attack vectors emerged,
such as cross-site scripting (XSS), SQL injection, insecure
direct object reference, remote malicious file inclusion, cross-
site request forgery, access control weaknesses, data

confidentiality breaches, and inadequate error handling. It is
imperative to address these issues to safeguard the integrity and
confidentiality of the system [13][14][19][20].

The paper organization is given as follows- Section 2
describes the related work to vulnerabilities in web
applications. In Section 3, various kinds of web attacks XSS,
CSRF, Clickjacking and UI exploits, SQL injection, HTML
Injection, Web Messaging and Web Workers injections, Web
Sockets, and Protocol/Schema/APIs attacks with HTML5 are
given. The proposed work is given in the form of defense
mechanisms against attacks given in section 4. The conclusion
of this research work is in section 5.

II. LITERATURE SURVEY

HTML is a popular writing and display format for webpages

that is expanding along with the web [11].

A. Vulnerabilities in HTML5

Web applications designed with HTML5 are susceptible to
a number of vulnerabilities as shown in Table 1.

TABLE I. HTML5 VULNERABILITIES

Vulnerability Description

V1:Cross-Site-

Scripting (XSS)

Attackers are able to insert harmful scripts into

websites [11][12].

V2:Cross-Site-
Request-Forgery

(CSRF)

Unlawful activities are carried out on a website

when users are logged in [7].

V3:Insecure

Direct Object
References

(IDOR)

Inadequate access restrictions or direct object
references being exposed [19].

V4:Security of
HTML5 APIs

Unknown vulnerabilities exist in HTML APIs
[20][21].

V5:Clickjacking
Deceiving people into taking undesirable actions

without their permission [10][17].

V6:SQL

Injection

Improper handling of user-supplied input within

SQL queries [13][16].

V7:HTML
Injection

Injecting malicious HTML code into vulnerable
areas of a website [19][23].

V8:Web

messaging and

web workers'
injections

Run code from different origins and potentially

expose sensitive data or resources [22][24].

V1: Cross-Site Scripting (XSS)

This kind of input validation vulnerability forces the
victim's device to run malicious code by injecting it into the

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

264

www.ijert.org
www.ijert.org

browser of the victim [1][5]. Every time a user requests a
specific function on a web server, a stored malicious script gets
executed [4]. This attack's objective is to steal a user's identity
data and carry out harmful actions such user impersonation,
keylogging, phishing, and webcam activation [14]. XSS attacks
can be performed using the XSSer, FoxyProxy, and Burp Suite
tools [1]. Static and dynamic analysis are the main focus of
traditional XSS detection techniques, which are inefficient
against payload floods [12][24].

V2: Cross-Site Request Forgery (CSRF)

 CSRF is an attack that forces logged-in users to do
unwanted activities on a web application [4][5][7].

Fig. 1. Cross-Site Request Forgery attack flow.

CSRF is also known as Session Riding, Cross-site Reference

Forgery (XSRF) attack, and Sea Surf attack [4]. The systematic

attack flow of cross-site request forgery attacks is shown in

Figure 1.
V3: Insecure Direct Object References (IDOR)

 Attackers perform this attack to access sensitive data or
carry out operations bypassing authorization [9][15].

V4: Security of HTML5 APIs

 Secure implementation of HTML5 APIs such as
WebSockets, Geolocation, local storage, and File API which
can be a source of vulnerabilities is essential [20][21][22].

V5: Clickjacking

 Clickjacking tricks users into clicking on elements of a
web page unknowingly, potentially leading to unintended
actions or exposing sensitive information. It is also known as a
UI redress attack or a "UI-layer" attack [1][10][17].

V6: SQL Injection

Web applications that interface with databases frequently
come under SQL injection attacks. An attacker can take
advantage of the vulnerability by inserting SQL code into user-

input fields or parameters that are used in SQL queries.
Injected SQL code has the ability to alter the logic of the query
or carry out unauthorized operations on the database [13][16].

V7: HTML Injection

This attack takes place by injecting malicious HTML code
into vulnerable areas of a website. The vulnerability is caused
due to improper validation, encoding, and sanitization of the
user input. An attacker can inject malicious HTML code that
gets executed in the context of other users' browsers [19][23].

V8: Web Messaging and Web Workers Injections

HTML5 is having a new interframe communication system
called Web Messaging. By postMessage() call parent
frame/domain can call with the iframe. The iframe can be
loaded on cross-domain. Hence, creating issues with
data/information validation & data leakage by cross-posting is
possible.

B. Attacks Performed on HTML5

Web applications developed using HTML5 can be targeted
by various attacks. There are various attacks performed on web
applications developed using HTML5.

A1: Cross-Site Scripting (XSS)

Web applications created with HTML5, as well as other
web technologies, are susceptible to cross-site scripting (XSS),
an attack vector. When a hacker is able to insert dangerous
scripts into web pages that other users view, XSS attacks take
place [5][14][24].

Fig. 2. Schematic diagram of an XSS attack.

XSS attack scenario on an HTML5 web application is

shown in Figure 2.

Step 1: A form field where users enter a username.

Step 2: The application takes the user's input and displays it

on a page, without properly sanitizing or validating the

input.

Step 3: An attacker enters a script as their name, such as

<script>malicious code</script>.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

265

www.ijert.org
www.ijert.org

Step 4: When the page is viewed by other users, the script
is executed within their browser, allowing the attacker to
perform various malicious actions, such as stealing
sensitive information, manipulating the content of the page,
or redirecting users to another malicious website.

Following are the XSS vulnerable tags and vulnerable
objects/methods.

A2: Cross-Site Request Forgery (CSRF)

CSRF attack happens when an attacker deceives a victim
into unintentionally executing an action on a web application
on which the victim is authorized [7]. Figure 3 shows the
systematic CSRF attack flow.

Fig. 3. CSRF attack Flow.

CSRF attack scenario on the web application is as follows.

Step 1: HTML5 web application includes a feature that

allows users to change their email addresses.

Step 2: When a user wants to change their email address,

they visit a specific URL or click a button that triggers the

action.

Step 3: The action to change the email address is a simple

HTTP POST request to a specific endpoint on the server.

Step 4: An attacker creates a malicious website or sends a

crafted email to the victim, containing a form or JavaScript

code that automatically submits a request to the email

address change endpoint of the web application.

Step 5: If the victim is authenticated in the web application

and visits the attacker's website or clicks on the link in the

email, the malicious request is sent to the web application,

changing the victim's email address without their

knowledge or consent.

Following are the CSRF vulnerable tags and vulnerable
objects/methods.

A3: Insecure Direct Object References (IDOR)

IDOR attacks exploit the improper implementation of
access controls, allowing an attacker to directly access and
manipulate sensitive data or resources.

IDOR attack scenario on the web application is as follows.

1. Direct Object References: In web applications, various
resources such as user profiles, documents, or database records
are typically assigned unique identifiers. These identifiers are
used to access or retrieve the corresponding resources. For
example, a user profile might be accessed using a URL like
http://test.com/user/profile?id=12.

2. Insufficient Access Controls: Insecure Direct Object
References arise when the application fails to properly enforce
access controls or authorization checks on the server side.

3. Manipulating Object References: An attacker can exploit
this vulnerability by manipulating the object references in the
application's requests. The attacker changed the identifier value
in the URL or manipulated parameters in form submissions to
access restricted resources.

4. Unauthorized Access: The attacker bypasses access controls
and directly accesses another user's private information or
confidential documents [9][15].

A4: Insecure Direct Object References (IDOR)

WebSockets, geolocation, local storage, and the File API
are powerful APIs provided by HTML5 that enhance web
applications with additional functionalities. It can be vulnerable
to certain attacks if not implemented and used securely.

1. WebSockets

Cross-Site WebSocket Hijacking (CSWSH): An attacker
tricks a user's browser into making unintended WebSocket
connections, allowing them to read or modify data transmitted
over the WebSocket connection.

WebSocket Injection: Malicious actors inject unauthorized
messages or data into a WebSocket connection, potentially
disrupting the application or manipulating its behavior
[20[21][22].

2. Geolocation API

Geolocation Spoofing: Attackers can forge or manipulate
GPS coordinates, leading to incorrect location information and
allowing attackers to perform location-based attacks, such as
fake check-ins or targeted scams.

3. Local Storage

Cross-Site Scripting (XSS): If user input is not properly
validated or sanitized before being stored in local storage, it
can lead to XSS vulnerabilities. Attackers can inject malicious
scripts that execute when the data is retrieved from local
storage, compromising the user's session or stealing sensitive
information.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

266

www.ijert.org
www.ijert.org

4. File API

Path Traversal: If file paths are not properly validated,
attackers can manipulate file path parameters to access files
outside of the intended directory, potentially exposing sensitive
information or executing malicious code.

5. Malicious File Upload

Attackers may upload files containing malware or
malicious scripts to the server, which can later be executed or
distributed to other users.

Following are the API Vulnerable Tags and Vulnerable
objects/methods.

A5: Clickjacking Attack

An attacker uses an iframe to lure visitors into clicking
links that will perform inappropriate actions in this type of web
attack [1]. Unexpected outcomes result from an object on the
iframe registering the click event [10].

Following are the Clickjacking attack scenarios.

1. Overlaying Content: Attackers create a transparent or
disguised layer over a web page, positioning elements such as
buttons, links, or form fields in a way that makes them invisible
or barely noticeable to the user. The attacker then entices the
user to interact with the disguised elements, while the actual
clicks are intercepted and applied to hidden elements of the
attacker's choosing.

2. Framing: Attackers load a target web application within
an invisible or disguised iframe on their malicious website. The
attacker overlays their own content, such as buttons or forms,
on top of the iframe. When the user interacts with the
seemingly harmless elements, they are actually interacting with
the underlying web application, potentially performing
unintended actions.

3. UI Redress: Attackers use CSS or other styling
techniques to manipulate the appearance of web elements.
They can make elements invisible, overlap them with other
elements, or move them off-screen, making it difficult for users
to detect their presence. By deceiving users into clicking on the
disguised elements, attackers can perform actions on their
behalf.

4. Invisible Frames: Attackers create invisible iframes and
position them over clickable elements on a web page. When
users click on what appears to be a legitimate element, they are
interacting with the hidden iframe, executing malicious actions
without their knowledge [10][18].

Following are the Click-Jacking vulnerable tags.

A6: SQL injection

An attacker exploits the vulnerability by injecting SQL
code into user input fields or parameters that are used in SQL
queries. The injected SQL code can manipulate the query's
logic or execute unauthorized actions on the database [13].

There are different SQL injection methods -

1. Blind Injection: From a true/false question's response, logical
inferences can be made.

2. Logically Incorrect Queries: retrieving data from various
error messages in order to exploit and inject

3. Piggy-Backed Queries: A dangerous query is added to an
already-injected query.

4. Stored Procedure: executing database’s built-in functions
using dangerous SQL Injection scripts/codes

5. Tautology: SQL injection queries are injected so they always
result in a true statement

6. Timing Attack: observing the database response time in order
to get information

7. Union Query: Using UNION, a malicious query combined
with a secure query to obtain more table-related data [2][16].

Syntax

Login page where the user enters their username and
password. The server-side code might construct an SQL query
like:

If the user input is not properly validated or sanitized, an
attacker can enter malicious input like

' OR '1'='1' --

The resulting query

The injected SQL code ' OR '1'='1' -- always evaluates to
true, effectively bypassing the authentication and allowing the
attacker to log in without a valid username or password.

Following are the SQL Injection vulnerable tags and
vulnerable objects/methods.

A7: HTML Injection

An attacker exploits the vulnerability by injecting HTML
code into user input fields or parameters that are later displayed
on web pages. The injected code can include JavaScript, which
allows the attacker to execute arbitrary actions on the victim's
browser [19][23].

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

267

www.ijert.org
www.ijert.org

For example, imagine a comment section on a web
application where users can enter comments that are later
displayed on the page without proper validation.

If the user input is not properly sanitized, an attacker can

inject malicious HTML code like:

The injected JavaScript code will be executed when other
users view the comment, leading to potential security breaches.

HTML injection attacks can have severe consequences,
including stealing sensitive information, session hijacking,
defacement of the website, phishing attacks, or spreading
malware.

A8: Web Messaging and Web Workers Injections

Potential attack scenarios involving Web Messaging and
Web Workers in a web application.

1. Cross-Origin Resource Sharing (CORS) Attacks: Web
Messaging allows communication between different origins
(domains) using the postMessage method. If the web
application doesn't properly implement Cross-Origin Resource
Sharing (CORS) policies, an attacker could exploit this to
perform Cross-Site Scripting (XSS) attacks. By injecting
malicious scripts into the web application, the attacker can steal
user data, manipulate the application's behavior, or perform
other malicious activities.

2. Denial-of-Service (DoS) Attacks: Web Workers enable
concurrent execution of scripts in the background, which
improves performance. However, an attacker can abuse this
feature to launch Denial-of-Service attacks. By creating
numerous Web Workers or by sending a high volume of
messages to existing workers, the attacker can exhaust system
resources, causing the application to become unresponsive or
crash.

3. Data Leakage Attacks: Web Messaging and Web Workers
rely on the exchange of messages between different
components of a web application. If sensitive information is
included in these messages, an attacker may intercept and
exploit it. This could lead to the exposure of user data, session
tokens, or other confidential information.

4. Man-in-the-Middle (MITM) Attacks: If the communication
between Web Workers or between the main application and
workers is not properly secured, an attacker can perform Man-
in-the-Middle attacks. By intercepting and modifying the
messages being sent, the attacker can manipulate the
application's behavior, inject malicious code, or capture
sensitive data.

Following are the web messaging and web workers'
injection vulnerable tags and vulnerable objects/methods.

III. PROPOSED DEFENSIVE TECHNIQUES FOR SECURE WEB

DEVELOPMENT

It is important to apply security standard practices for
developing web applications. Following are the defensive
mechanisms for secure web development.

D1: Cross-Site Scripting (XSS) Protection

Content Security Policy (CSP) is used to control scripts and
content to execute on your web application. Use a robust and
secure framework that automatically applies output encoding to
user input to minimize the risk of XSS vulnerabilities.

Various measures to mitigate XSS attacks are as follows.

1. Use HTTPOnly and Secure Flags for Cookies

Set the HttpOnly and Secure flags on cookies to prevent
client-side scripts from accessing them, thus reducing the risk
of session hijacking through XSS attacks. This can be done on
the server side when creating or setting cookies.

2. Input Validation and Sanitization

Validate and sanitize all user inputs, especially those used
in dynamic content generation, like username and password
fields. Use a whitelist approach for input validation, allowing
only specific characters that are required for the input.

3. Output Encoding

 Encode all dynamic content that is inserted into the HTML,
to prevent script execution. Utilize functions like
encodeURIComponent or server-side templating engines that
automatically encode data.

4. Content Security Policy (CSP)

Implement a Content Security Policy to restrict the sources
from which the browser can load resources (scripts, styles,

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

268

www.ijert.org
www.ijert.org

images) on your web page. This can help prevent the execution
of malicious scripts injected through XSS attacks.

5. HTTP Header Security

Set the following HTTP security headers in the server
response to enhance protection.

6. Use CSRF Tokens

Employ Cross-Site Request Forgery (CSRF) tokens to
ensure that only authorized requests from your website can
modify user data. This helps protect against CSRF attacks that
could be used in combination with XSS.

D2: Cross-Site Request Forgery (CSRF) Protection

Implement measures like CSRF tokens to validate and
authenticate user requests, ensuring that requests originate from
trusted sources and preventing unauthorized actions. Verify the
origin and integrity of requests to mitigate the risk of CSRF
attacks. To prevent CSRF attacks in HTML5 web applications,
the following measures can be implemented.

1. Generate and Store CSRF Token on the Server

On the server side, generate a CSRF token and associate it
with the user's session. Store the token securely in the session
or as a separate cookie.

2. Include CSRF Token in the Login Form

In the HTML5 login form, include the CSRF token as a
hidden input field.

3. Verify CSRF Token on the Server

When the user submits a form, the CSRF token is sent to
the server as part of the request payload. Validate the token's
authenticity on the server before processing the request.

D3: Insecure Direct Object References (IDOR) prevention

To prevent IDOR attacks, it is essential to implement
proper access controls and authorization mechanisms in web
applications.

1. Context-Based Access Controls: Ensure that every request to
access a sensitive resource is validated against the user's
permissions and privileges. This should be enforced on the
server side, regardless of any client-side restrictions
implemented using HTML5.

2. Indirect Object References: Avoid directly exposing internal
object references or identifiers in URLs or form parameters.
Instead, use an indirect reference, such as a unique session
identifier, which is then mapped to the actual resource on the
server side. This helps prevent attackers from easily
manipulating object references.

3. Role-Based Access Control (RBAC): Implement a role-based
access control model, where users are assigned specific roles or
privileges, and access to resources is granted based on those
roles. This ensures that users can only access resources that are
authorized for their role.

D4: Security of HTML5 APIs

To mitigate these vulnerabilities and ensure the secure
usage of these APIs, here are some recommended practices:

1. WebSockets:

● Validate and sanitize user input to prevent injection
attacks.

● Implement server-side checks to ensure the
WebSocket connection is legitimate.

● Encrypt sensitive data transmitted over WebSockets
to protect it from interception.

2. Geolocation API:

• Obtain user consent before accessing their location data.

• Verify the accuracy and integrity of geolocation data
received from the API.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

269

www.ijert.org
www.ijert.org

• Regularly review and update the accuracy of geolocation
data stored by the application.

3. Local Storage:

• Sanitize and validate user input before storing it in local
storage.

• Avoid storing sensitive information in local storage
whenever possible.

• Implement content security policies and input validation
to prevent XSS attacks.

4. File API:

• Validate file types and extensions before accepting file
uploads.

• Set appropriate file upload size limits to prevent resource
exhaustion attacks.

• Store uploaded files in a secure location with restricted
access permissions.

D5: Clickjacking Attack Prevention

To protect against clickjacking attacks, consider
implementing the following preventive measures:

1. X-Frame-Options: Set the X-Frame-Options response header
to prevent web applications from being framed within iframes
on other domains. The header can be set to "DENY" to
disallow framing altogether or "SAMEORIGIN" to allow
framing only from the same origin.

2. Content Security Policy (CSP): Implement a robust CSP to
control which domains are allowed to embed your web
application within iframes. Use the "frame-ancestors" directive
to specify trusted origins that can frame your application.

3. Frame Busting Techniques: Include frame-busting
JavaScript code within your web application to prevent it from
being loaded within iframes on other domains. This code can
break out of frames and redirect the user to the intended page if
the application is being framed.

4. JavaScript Event Validation: Implement client-side
JavaScript checks to validate user actions and prevent
interactions with hidden or overlaid elements. Verify that the
element being clicked is visible, not overlapped, and positioned
correctly.

5. Visual Indicators: Use visual cues or indicators to clearly
show when the page is being framed or overlaid with external
content. This can help users detect and avoid interacting with
malicious elements.

D6: SQL injection

SQL injection attacks can have severe consequences,
including unauthorized access to sensitive data, data
manipulation, database compromise, or even complete system
compromise. To protect against SQL injection attacks in a web
application developed in HTML5, the following security
measures can be implemented.

Parameterized Queries: Use prepared statements or
parameterized queries with placeholders instead of
concatenating user input directly into SQL queries. This

ensures that user input is treated as data rather than executable
code.

Input Validation and Sanitization: Validate and sanitize user
input on the server side to reject or neutralize potentially
malicious characters or patterns.

Least Privilege Principle: Assign minimal database privileges
to the application's database user account. Restrict the account's
permissions to only the necessary database operations.

Principle of Least Exposure: Limit the amount of sensitive
information exposed to the web application, minimizing the
potential impact of a successful SQL injection attack.

D7: HTML injection

To protect against HTML injection attacks in a web
application, the following security measures should be
implemented.

Input Validation and Sanitization: Validate and sanitize user
input on the server side to reject or neutralize potentially
malicious HTML code or tags. Use proper encoding techniques

to render user input safely.

Output Encoding: Properly encode user-generated content
when displaying it on web pages. This ensures that any HTML
tags or special characters are treated as literal text rather than
executable code.

Content Security Policy (CSP): Implement a Content Security
Policy that defines which sources of content (scripts,
stylesheets, etc.) are allowed to be loaded and executed on your

web pages. This can help mitigate the impact of XSS attacks.

D8: Defense Mechanism for Web Messaging and Web
Workers Injections

1. Web Messaging Injection

Web Messaging allows communication between different
browsing contexts. For e.g., between an iframe and its parent

window can be misused if not handled securely.

2. Web Workers Injection:

Web Workers run scripts in the background without
affecting the main thread. To prevent injection attacks, avoid
using user input or untrusted sources directly within a Web
Worker script.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

270

www.ijert.org
www.ijert.org

To protect against these attacks, consider the following
security practices:

• Implement proper CORS policies to restrict
communication between different origins.

• Sanitize and validate input data to prevent XSS attacks.

• Implement rate limiting and monitoring mechanisms to
prevent DoS attacks.

• Avoid sending sensitive information through messages or
encrypting the data before sending.

• Use secure communication channels (e.g., HTTPS) to
prevent MITM attacks.

IV. CONCLUSION

Web application security is of prime concern in today's era
and demands a proactive approach throughout the entire
software development life cycle. This paper is focusing on the
crucial task of developing secure, robust, and reliable web
applications through a detailed exploration of HTML5 and its
powerful APIs such as Web Storage API, WebSockets,
geolocation, local storage, and File API. HTML5 provides
dynamic functions to web pages without additional plug-ins
such as ActiveX, Flash, and Silverlight. Most attacks on web
applications use such plug-ins. HTML5 provides abilities that
can be substituted for plug-ins, so hackers focus their attacks
on HTML5. Hence the vulnerabilities and attacks in HTML5
and its APIs are demonstrated and a suitable defense
mechanism is provided to secure coding with HTML5. This
paper serves as a stepping stone towards a more secure web
ecosystem and aims to inspire further advancements in the field
of web development.

REFERENCES

[1] Voo Teck En Vinesha Selvarajah, “Cross-Site Scripting (XSS)”,2022,
IEEE.

[2] Jean-Paul A. Yaacoub, Hassan N. Noura, Ola Salman, Ali Chehab, “A
Survey on Ethical Hacking: Issues And Challenges”, A PREPRINT -
MARCH 30, 2021.

[3] Rodríguez, G. E., Torres, J. G., Flores, P., & Benavides, D. E, “Cross-
Site Scripting (XSS) Attacks And Mitigation: A Survey” Computer
Networks, Elsevier, pp. 1-43, 2019.

[4] Ajjarapu Kusuma Priyanka, Siddemsetty Sai Smruthi, “WebApplication
Vulnerabilities: Exploitation and Prevention”, (ICIRCA-2020) 2020
IEEE.

[5] Egor A.Efremov, Maria V. Pogrebnyak, Maria Skvortsova, “ HTML5
Security issue”, IEEE,2021

[6] Nirmal K, B. Janet, R. Kumar, “Web Application Vulnerabilities – The
Hacker’s Treasure”, International Conference on Inventive Research in
Computing Applications, (ICIRCA), IEEE, pp-58-62,2018.

[7] M.] Ksenia Pegueroa,, Xiuzhen Cheng, “CSRF protection in JavaScript
frameworks and the security of JavaScript applications”, High-
Confidence Computing, Elsevier,2021.

[8] Pei Wang, Bjarki Ágúst Guðmundsson, Krzysztof Kotowicz,“Adopting
Trusted Types in ProductionWeb Frameworks to Prevent DOM-Based
Cross-Site Scripting: A Case Study”, European Symposium on Security
and Privacy Workshops (EuroS&PW), 2021, pp-60-73 IEEE.

[9] Nisal Madhushan Vithanage Neera Jeyamohan, “WebGuardia – An
Integrated Penetration Testing System to Detect Web Application
Vulnerabilities”, pp-221-227, 2016 IEEE.

[10] Kanpata Sudhakara Rao, Naman Jain, Nikhil Limaje, “Two for the price
of one: A combined browser defense against XSS and clickjacking”,
2016 IEEE.

[11] M.K. Gupta, M.C. Govil, G. Singh, Predicting cross-site scripting
(XSS) security vulnerabilities in web applications, in 2015 12th
International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2015, pp. 162–167.

[12] Zhou, Y., & Wang, P. (2019). An ensemble learning approach for XSS
attack detection with domain knowledge and threat intelligence.
Computers & Security, 82, 261–269.

[13] Tao Zhang; Xi Guo,” Research on SQL Injection Vulnerabilities and Its
Detection Methods”, International Conference on Data Science and
Business Analytics (ICDSBA), IEEE 2020.

[14] Vikas K. Malviya, Saket Saurav, Atul Gupta, “On Security Issues in
Web Applications through Cross Site Scripting (XSS)”, Asia-Pacific
Software Engineering Conference, 2013 IEEE.

[15] Owasp.org, "Testing for Insecure Direct Object References
(OTGAUTHZ-004) - OWASP", 2015. [Online]
https://www.owasp.org/index.php/Testing_for_Insecure_Direct_Object_
References_%28OTG-AUTHZ-004%29.

[16] Lwin Khin Shar and Hee Beng Kuan Tan, “Mining Input Sanitization
Patterns for Predicting SQL Injection and Cross Site Scripting
Vulnerabilities”, ICSE 2012,2012 IEEE.

[17] Asra Kalim, P.K.Jha, Deepak Singh Thomar, “Novel Detection
Technique in Frame jacking We Application “, ICCAKM 2021, IEEE.

[18] Rakhi Sinha, Dolly Uppal, Dharmendra Singh, Rakesh Rathi,
“Clickjacking: Existing Defenses and Some Novel Approaches”, 2014,
IEEE.

[19] https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/11-Client-side_Testing/03-
Testing_for_HTML_Injection

[20] Jussi-Pekka Erkkilä, “WebSocket Security Analysis “, Aalto University
T-110.5291 Seminar on Network Security, 2012.

[21] Vanessa Wang, Frank Salim, Peter Moskovits, “The Definitive Guide to
HTML5 WebSocket”, Springer, 2013.

[22] Qigang Liu, Xiangyang Sun, “Research of Web Real-Time
Communication Based on Web Socket”, 2012 SciRes, IJCNS.

[23] G. Deepaa, P. Santhi Thilagama, “Securing Web Applications from
Injection and Logic Vulnerabilities: Approaches and Challenges”
Information and Software Technology, Elsevier 2016.

[24] Wenbo Mei, Zhaohua Long, “Research and Defense of Cross-Site
WebSocket Hijacking Vulnerability”, 2020 IEEE International
Conference on Artificial Intelligence and Computer Applications
(ICAICA), pp.591-594, 2020 IEEE.

.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV12IS070091
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Vol. 12 Issue 07, July-2023

271

www.ijert.org
www.ijert.org

