
Web Server Security

[1] K.Rajiv [2] A.Prashanthi [3] Ch.Bharadwaja

ABSTRACT

Web Server security comes to being from confidentiality,

in-tegrity, availability of appropriate information and

authentication. A leaky server can cause a vital harm to

an organization. So, security is the most complex topic

that the modern world is concerned about. A security

breach in-curs a cost for the organization in terms of

money as well as goodwill. Databases store confidential

and sensitive in-formation. Hence, it is the most

important task of an organization to safeguard crucial

information from being stolen and misused. The general

security issues of a Web Server and how security features

are maintained in Apache are the points of focus in this

paper.

1 INTRODUCTION

A Web Server is a software application responsible

for fetching and serving web pages requested by a

client. Web pages may be stored in the host

computer or another computer‟s hard drive.
The general goal of network security is to keep

strangers out. Yet the point of a Web site is to provide the

world with controlled access to the network [1]. Drawing

the line can be difficult. A poorly configured Web server

can punch a hole in the most carefully designed firewall

system. A poorly configured firewall can make a Web site

impossible to use. Things get particularly complicated in an

intranet environment, where the Web server must typically

be configured to recognize and authenticate various

groups of users, each with distinct access privileges.

Apache is the most widely used web server. 40

mil-lion sites now running on the Apache server,

which powers nearly 70 percent of web sites.

Understanding the approach of Apache towards

security can help us make other applications secure.
This paper is organized as follows: in section 2, we

have presented the general security issues of Web

Servers. In section 3 we have gone into depth and

discussed how these security features are implemented

in Apache. Finally, we match the security features of

Apache with various security patterns.

2 SECURITY ISSUES

Web Servers are very attractive targets for attackers and

that‟s why security is an essential topic for administrators

of both internet-connected and intranet servers. In this

section we discuss the general security issues of a web

server.

2.1. Integrity and Privacy

A web server is a gateway through which the entire

internet population can peek into. To prevent

common attacks of content corruption and data theft,

integrity and privacy is the primary issue.

2.2. Common Gateway Interface (CGI) script

CGI scripts are programs that run on the Web Servers

in real time. They handle different inputs from the users

and therefore get inputs from web browsers, access

database and can return information to the client

browser. CGI scripts are like miniature servers. So, a

buggy script can be a potential attack target. CGI scripts

can present security holes in two ways:

 They may show such information from the host

that may help attackers break through the server.

 The user inputs may be tricky enough to be

executable commands and do unwanted harm

to the host machine.

2.3. Access Control

Access Control is, who is allowed to view what on a

Web Server and more specifically to execute what in

case of CGI scripts.

2.4. Data transmission through TCP/IP

The TCP/IP protocol was not designed with security in

mind. Hence it is vulnerable to network eavesdropping.

When confidential documents are transmitted from the

Web server to the browser, or when the end-user sends

private information back to the server inside a fill-out

form, someone may be listening in.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

1www.ijert.org

IJ
E
R
T

2.5. Denial-of-Service (DoS)

Attacks in which the intruder‟s goal is to shut down the tar-get

rather than steal data are called DoS attacks[2]. In these

network-based attacks authorized users are denied the use of

network services. DoS attacks come in variety of forms and

aim at a variety of services such as the consumption of

scarce, limited, or non-renewable resources, destruction or

alteration of configuration information and physical de-

struction or alteration of network components.

2.6. Ability of Web Server

A web server with limited features is better. Simple

servers that do little more than make static files

available for re-quests are probably safer than

complex servers that offer such features as on-the-fly

directory listings, CGI script execution, server-side

include processing and scripted error handling.

2.7. File Permission

There are two file systems roots working in a server,

namely, the document root which has all the HTMLs

and the server root having all the logs and configuration

files. It is important to get the permissions right for the

server side root because this keeps all the sensitive

information and also the CGI scripts.

3. APACHE SECURITY ISSUES

While discussing about security features of Web Servers,

Apache is the best option to study because of its easily

being customized by design. Apache is the number one

choice for a Web server for both Linux and FreeBSD. It is

the most widely used Web Server on the Internet because

of its standards compliance, scalability, dynamic shared

objects, customizability, programmability[3] and more.

Here we will discuss what the security issues in Apache

are and how they are implemented.

3.1. Securing against CGI

Three ways to secure against CGI[4] are discussed below:

3.1.1. The ScriptAlias approach

The first step in securely configuring CGI under Apache

is to create a central directory to store CGI applications

in. This directory should always be separate from the

DocumentRoot tree. It also ensures only Web

administrators can access the files that reside there.

Then Apache is informed which directory contains CGI

programs using the ScriptAl-ias directive.

ScriptAlias /cgi-bin/ /www/mysite/cgi-bin/

ScriptAlias designated directories are not able to

be browsed by default for security reasons. Ideally,

no one but the lead CGI developer and the system

administrator should have full access on the files

contained by the directory referenced by ScriptAlias.

3.1.2. The Alias/AddHandler approach

The AddHandler directive is used to run CGI scripts
from arbitrary directories. To allow CGI program
execution for any file ending in .cgi in users‟
directories, the following configuration can be used:

<Directory /home/*/public_html> Options
+ExecCGI
AddHandler cgi-script .cgi
</Directory>

3.1.3. Reducing CGI risks with wrappers

A wrapper allows CGI applications to be run under the user

ID of the site owner, i.e. the owner of the directories and

documents that comprise a Web site. Wrapping CGI

applications restricts the damage a user can do to the

user‟s files alone. Most CGI wrappers perform additional

security checks before they allow a requested application

to execute. Two popular CGI wrappers are:

 suEXEC: When a request is made for a CGI or SSI

file not owned by the Apache user, the request is

passed to suEXEC with the program name and the

owner‟s user/group ID. suEXEC then runs a series of

checks to ensure the request is valid. If it is, the

script is ex-ecuted. Failure in any of the checks

causes the script not to run and an error is logged.

 CGIWrap: CGIWrap is similar to the suEXEC pro-

gram in that it permits user access to CGI programs

without the risk of compromising server security. It

does this by running any program defined as a CGI

application as the file owner rather than the Apache

user. CGIWrap also performs several security

checks on the CGI application; the application will

not be executed if any of the checks fail.

3.2. Securing against Server Side Includes

SSI are directives that are placed in HTML pages, and

evaluated on the server while the pages are being served.

They let adding dynamically generated content to an

existing HT -ML page, without having to serve the entire

page via a CGI program, or other dynamic technology. SSI

presents a server administrator with potential risks[4]:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

2www.ijert.org

IJ
E
R
T

 First of all the risk is of „Increased Load on

Server‟. All SSI enabled files have to be parsed

by the server whether there are not any SSI

directives included within the files.

 Secondly, using the „exec cmd‟ element, SSI-

enabled files can execute any CGI script or program

under the permissions of the user and group Apache

runs as, as configured in httpd.conf. For example:

<pre>
<!--#exec cmd="ls" --> </pre>

Or on Windows
<pre>
<!--#exec cmd="dir" --> </pre>

This feature is exceedingly dangerous, as it will

execute whatever code happens to be

embedded in the exec tag.

There are actually three ways to enhance security

and also getting the advantages of SSI:

 To isolate the damage a wayward SSI file can

cause, a server administrator can enable suEXEC.

 The extension of SSI enabled files should be different,

such as conventional .shtml. This helps keep server

load at a minimum and allows for easier management

of risk. One disadvantage to this approach is that if SSI

directives are to be added to an existing page, the

name of that page, and all links to that page have to be

changed, in order to give it a .shtml extension, so that

those directives would be executed. The other method

is to use the XBitHack directive:

XBitHack on

XBitHack tells Apache to parse files for SSI
direc-tives if they have the execute bit set. So,
to add SSI directives to an existing page, rather
than having to change the file name, the file
has to be made executable using chmod.

chmod +x pagename.html

 Another solution is to disable the ability to run
scripts and programs from SSI pages. To do this
„Includes‟ is replaced with „IncludesNOEXEC‟ in
the „Options‟ directive. Users may still use:

<--#include virtual="..." -->
to execute CGI scripts if these scripts are in

directo-ries designated by a ScriptAlias directive.

3.3. Memory and Resource Management: Apache Pool

Apache provides an own memory and resource

management known as pools. Pools are means to

keep track of all re-sources ever used by Apache

itself or any add-on module used with Apache. A pool

can manage memory, sockets and processes, which

are all valuable resources for a server system.
With the pool concept, a developer registers any

memory, socket or process with a pool that has a

predetermined lifetime. Once the pool is destroyed, all

resources managed by that pool are released

automatically. Only a few routines that have been tested

thoroughly will then take care of freeing all resources

registered for this pool. That way only a few routines have

to make sure that all resources are freed. Mistakes within

those are a lot easier to find and this technology takes a

burden of all other developers.

3.4. Intrusion Detection: Apache Log

In order to effectively manage a web server, it is necessary to

get feedback about the activity and performance of the server

as well as any problems that may be occurring. The Apache

HTTP Server provides very comprehensive and flexible

logging capabilities. Log files show what actually is going on

against the server. Though the log files show what has already

happened, they give a view of understand-ing of what attacks

is thrown against the server and allows checking if the

necessary level of security is present[6].

 The access log stores the IP address of the client

accessing the system as well as the file retrieved.

 The agent log details the client programs that

were used to access the server.

 The error log lists server errors. Keeping track

of these logs can be helpful in identifying

attempted intrusions. Penetration techniques

can also be gleamed from the logs.

 The refer log indicates the URL that the

browser pre-viously visited and that of the URL

that the browser is currently viewing.

Apache provides a number of modules to support

logging. Some of them are:
mod log forensic: This module provides for forensic

logging of client requests. Logging is done before

and after processing a request, so the forensic log

contains two log lines for each request.
modlogio: This module provides the logging of input and

output number of bytes received/sent per request.
mod log config: This module provides for flexible logging

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

3www.ijert.org

IJ
E
R
T

of client requests. Logs are written in a customizable

for-mat, and may be written directly to a file, or to an

external program.

3.5. Access Control

Apache has the module mod access to provide access control.

mod access as its name clearly implies, provides access

control for documents. It allows one to restrict or allow access

to resources based on the client‟s host name, IP ad-dress, or

network address. The IP based control is known as Mandatory

Access Control (MAC) and password based control is known

as Discretionary Access Control (DAC)[5]. The directives

provided by mod access are:

 Allow Directive: Controls which hosts can

access an area of the server. Examples are:
A partial domain name: Allow from apache.org
A full IP address: Allow from 10.1.2.3
A partial IP address: Allow from 10.1

 Deny Directive: Controls which hosts are

denied access to the server. The syntax is:

Deny from all

 Order Directive: Controls the default access state
and the order in which Allow and Deny are
evaluated. Ordering is of: Allow, Deny /Deny,
Allow/ Mutual-failure. In the following example, all
hosts in the apache.org domain are allowed
access; all other hosts are denied access.

Order Deny, Allow
Deny from all
Allow from apache.org

3.6. Authentication

Apache provides a number of modules to support

authentication. They are:

mod auth: User Authentication by User Name/Password. Any

module that is called during the authentication phase must

verify the identity of the requester, based on credentials

presented by the user. The authentication module deals with

the HTTP Basic Authentication facility, which is simply a user

name/password pair submitted by the client together with the

request for a document. This module allows one to check this

information against a flat file database similar to UNIX‟s

/etc/passwd and /etc/group files and to deny access when the

given user name/password doesn‟t match the database

information. Special variants of this module exist that offer the

same functionality but use a database from other than a flat

file (for performance reasons).
mod auth anon: User Authentication by Anonymous

Na-me/E-Mail Address.

mod auth dbm: User Authentication by User Name/

Pass-word (UNIX NDBM).
mod auth db: User Authentication by User Name/

Pass-word (Berkeley-DB).

mod digest: Message digest-based authentication mechanism.

In addition to the classical HTTP/1.0 Basic Authentication

mechanism, a message digest-based[2] HTTP authentication

mechanism exists as defined in RFC 2617. Instead of

transferring a clear-text user name/password pair with the

HTTP request (which can be easily monitored), a message

digest is calculated (via the MD5 algorithm) and transferred

together with the user name. This module then performs the

same message digest calculation for the pass-word stored in

the server‟s authentication database. When the two digests

are equal, access is allowed. This approach offers an obvious

advantage relative to basic authentication, as the password is

not sent over the network.

4. CONCLUSION

In this paper, we have presented the security issues of

web server and how these features have been

implemented in the Apache HTTP Server. A closer look

at the implementation of the security features reveals

that they closely resemble with various security patterns

[7]. mod access deploys the pattern Single Access Point

to provide password based access control mechanism.

The IP based access control mechanism is based on

the Roles pattern. Moreover, the authenticated users

can see their files only, i.e. the security pattern Limited

View is used here. The practices that Apache uses to

be secured against CGI, SSI, intrusion and memory

leaks can be repeated to make other programs secure

and efficient.

5. REFERENCES

[1] L. D. Stein, “Web Security: A Step-by-Step Reference

Guide,” Addison Wesley Professional, 1998.

[2] A. S. Tanenbaum, “Computer Networks, Fourth Edition,”

Pearson Education Inc., 2003.

[3] C. Aulds, “Linux Apache Web Server Administration,

Second Edition,” Sybex Inc., 2001.

[4] J. P. Sousa and D. Garlan, “Apache HTTP Server

Version 2.0 Documentation,” The Apache Software

Foundation, 1995– 2005.

[5] J. Pieprzyk, T. Hardjono and J. Seberry, “Fundamentals of

Computer Security,” Springer-Verlag, 2003.

[6] S. Chanson, “Internet Security Handbook, Edition Two” The Hong

Kong University of Science and Technology, June 2001.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

4www.ijert.org

IJ
E
R
T

[7] J. Yoder and J. Barcalow, “Architectural Patterns for Enabling

Application Security” Pattern Languages of Programs, 1997.

AUTHORS

K.Rajiv Working as an Assistant

Professor in Nalla Narsimha

Reddy Educational Society of

Institutions. Done his M.Tech in

2010 and B.Tech in 2008.

A.Prashanthi Working as an

Assistant Professor in Nalla

Narsimha Reddy Educational

Society of Institutions. Done her

M.Tech in 2010 and B.Tech in

2007.

Ch.Bharadwaja Working as an Assistant Professor in

Nalla Narsimha Reddy Educational Society of

Institutions. Done his B.Tech in 2010.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 8, October - 2012
ISSN: 2278-0181

5www.ijert.org

IJ
E
R
T

