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Abstract— Wireless sensor networks are getting more 

importance with the technological progression of all realms of 

life. The critical issue of energy expenditure and management of 

wireless sensor networks (WSNs) has been discussed in this 

paper. Together with the normal procedures for saving the 

energy by using renewable energy sources, the study talks over 

the use of compressive sensing (CS) framework in WSNs to 

increase the energy efficiency. The energy efficient performance 

of different CS algorithms are discussed with necessary 

estimations.  It is clear that for a sufficiently sparse sensor 

signal, a substantial amount of energy can be hold back by using 

CS methods. 

Keywords— Sensor Network, Renewable Energy, Compressive 

Sensing, Sparsity, Efficiency  

I.  INTRODUCTION 

Wireless Sensor Networks became an inexorable part of 

daily life, possessing amazing potential aimed at numerous 

applications. A WSN comprises of low-energy and low-cost, 

tiny sensor nodes. They cooperatively observe physical 

parameters and regulate actuators. A network may consists of 

thousands of randomly deployed self-configurable nodes that 

operate autonomously in interaction with surroundings to form 

a multi-hop topology. They implement sensing, computation, 

communication and actuating. Figure 1 is an overview of 

various WSNs showing their immense potential for diverse 

applications. 

Along with the rise in popularity of WSNs, the design and 

implementation challenges also show an intense upsurge. 

Recently, because of wide applications, potential and 

distinctive challenges, WSNs became a broiling research 

arena. The crucial organizational challenges of the WSNs are 

data reduction, energy efficiency, stability and prolonged 

lifetime. The battery capacities of nodes are limited and 

replacement is impractical. Considering WSNs, energy 

efficiency issue is very severe at both sensor node level and 

the network infrastructure level. The sensors basically 

become useless without energy and they cannot be added to 

the utility of WSN. Typically WSNs are having limited 

power storage capabilities. The proper WSN design should 

consider effectual management of the existing energy and 

possibility of the addition of some energy harvesting 

methods. But because of the dense arrangement of sensor 

modules at harsh environment and due to limitations in 

hardware, computation and communication requirements, a 

compromise in the energy expenditure plan has been made. 

WSNs’ energy management concerns with three fundamental 

aspects. They are energy harvesting, storage of harvested 

energy and controlling of energy consumption. The paper 

deals with these three aspects. The first part of the paper 

describes the optimization of the networks with the 

application of various renewable energy harvesting sources. 

A detailed study is conducted on the existing energy 

harvesting sources and the storage technologies, which are 

applicable to the WSNs’ arena. The second part explains the 

controlling of energy consumption and energy saving with 

the new concept of Compressive Sensing (CS). The energy 

expenditure can be reduced by decreasing the processing, 

communication and storage overheads with CS concept. 

 

  
Fig. 1. Overview of WSNs 

II. ENERGY HARVESTING  WITH RENEWABLE 

ENERGY RESOURCES  

There are numerous methods available to harvest various 

energies in the ambient environment. The effective and 
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efficient application of proper method or a combination of 

suitable methods can serve the power hungry WSN nodes for 

a long life. This involves two steps. They are the selection of 

proper renewable energy source and the selection of proper 

energy storage technology. The key sources of ambient 

energy suitable for use with WSNs are solar, mechanical, 

thermal, acoustic, dynamic fluids and magnetic energy.  

A. Solar Energy  

Solar power is the matured and most common form of the 

renewable sources of energy. In a solar system, solar cells 

transform sunlight to electrical power as per the photovoltaic 

principle [1]. Depending on the materials used, solar cells can 

be of four categories. They are silicon solar batteries, polymer 

solar batteries (PPVC), multi-compound solar cells and nano-

crystalline solar cells. The silicon solar batteries are more 

popular among these and they possess the principal share in 

production and market. The proficiency of solar cells depends 

on several factors like solar insolation, seasonal effects, snow 

cover and dense cloud periods, elevation and latitude, shadow  

by obstructions, installed position and angle of solar panel, 

energy conditioning capability, characteristics of cells and the 

chemistry and capacity of energy storage components  [2].The 

efficiency comparison of various categories is depicted in 

Table 1. 

TABLE I.  SOLAR CELLS - EFFICIENCY COMPARISON    

Type Efficiency 

Silicon solar batteries Up to 24% 

Multi-compound solar cells Up to 30% 

Polymer solar batteries (PPVC) Below 5% 

Nanocrystalline solar cells More than 10% 

B. Mechanical Energy  

When an object is imperiled to any movement or 

mechanical deformation, mechanical energy is generated. This 

can be transformed to electrical form by different methods like 

electrostatic, electromagnetic and piezoelectric conversion [3]. 

The vibration is the chief rampant energy source available in 

many environments like bridges, buildings, vehicles, roads, 

ships, and even in human or animals as blood current and 

body pulse. The common vibration frequency range is 60Hz-

200Hz 

1) Electrostatic (Capacitive) Energy Harvesting: This 

system produces voltage by varying capacitance. There 

should apply an initial voltage to the capacitance, before 

outputting the energy from the system, [4]. Then by the 

external vibrations, the charge quantity in the capacitor will 

change, which generates a charge flow in the circuit, by 

providing electrical power to the sensors. 

2) Electromagnetic Energy Harvesting: This is centered 

on the principle of electromagnetic induction. The parameters 

important in this harvesting are magnetic induction, coercive 

force and magnetic flux density. Four common types of 

magnets are used in the system. They are ceramic, Alnico, 

SmCo and NdFeB. NdFeB is the more common material as it 

possess the highest magnetic field intensity and large 

coercive force. It will not undergo any demagnetization with 

the generator vibration. The extracted power is related with 

electromagnetic damping. This damping depends on coil 

turns, flux gradient, load impedance and coil impedance. All 

these parameters are connected with the size. [5]. By 

sputtering, electroplating and through other deposition 

technologies, the micro-magnets can be fabricated.  

3) Piezoelectric Energy Harvesters: When subjected to 

pressure, piezoelectric materials generate electricity [6].The 

piezoelectric harvesting technology utilizes this inherent 

property. Major Piezoelectric materials include piezoelectric 

mono-crystal, piezoelectric polymers, piezoelectric 

composites and piezoelectric ceramics. Among these, 

piezoelectric ceramic PZT is used commonly in the 

generators. For better performance and improved efficiency, 

the piezoelectric materials should possess greater 

electromechanical coupling coefficient, low loss and high 

piezoelectric constant strain.  

C. Thermal Energy 

 There exist numerous ambient heat sources around us, 

like geo-thermal [7], engine exhaust, industrial waste heat, 

the heat of sun etc. Thermoelectric energy harvesting system 

utilizes the temperature gradient between the two ends of 

semiconductor PN junction to generate power. 

Thermoelectric materials exhibit mainly three temperature-

dependent properties: thermal conductivity, electrical 

conductivity and Seebeck coefficient [8]. The generated 

voltage in thermoelectric generators (TEGs) is proportionate 

with temperature difference and the quantity of 

thermoelectric elements.  

D. Dynamic Fluid Energy 

Dynamic fluid energy comprises flowing water and wind 

power. The fluid’s kinetic energy is transformed to electrical 

form by two approaches. The first method is by using 

mechanical parts like micro turbine systems. The second 

method employs non-mechanical parts, similar to mechanical 

energy harvesting techniques. Here the flowing wind or water 

brings mechanical vibration which is transformed to electrical 

energy by electromagnetic [9], piezoelectric [10, 11] or 

electrostatic principles [12]. 

1) Micro Wind Harvester: The forced convection or 

ambient air flow [13] is utilized for energy harvesting for 

WSNs in outdoor, inaccessible or remote locations [14]. The 

wind  harvesting methods include electromagnetic wind 

generators, piezoelectric wind harvesters, micro wind 

turbines and micro wind belt generators. 

2) Flowing Water Energy Harvesting: The kinetic energy 

of the water flow due to the fluctuating water pressure, is 

rehabilitated to electrical form by energy harvesters [15] 

E. Acoustic Energy 

Spreading of the sound waves on an object surface, causes 

the object vibration. This acoustic energy is harvested to 

electrical energy. The existing acoustic power spectrum 

comprises the transverse, longitudinal, bending, shears or 

hydrostatic waves. The major components of acoustic 
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harvesting system contains a mechanical power spectrum 

input, a proper acoustic impedance matching, a biased 

piezoelectric transducers for energy conversion from 

mechanical to electrical form and a matched electrical load 

[16].  The power contained by acoustic energy is huge for 

high decibel levels. 

F. Magnetic Energy 

The magnetic energy, an inexhaustible and renewable 

power source, is ubiquitous on the earth. The magnetic effect 

of electric current is utilized to produce magnetic energy for 

delivering to wireless sensors. A changing magnetic field is 

produced around the power lines while transmitting 

alternating current. 

III. BATTERY TECHNOLOGIES IN WSNS  

Even though technologies are trying hard for scaling 

down weight and size of sensor networks’ batteries, batteries 

remains still as a significant fraction of total weight and size 

of nodes. As size and energy storing capacity are strictly 

related, batteries are pigeonholed by power and energy 

densities. Energy density designates the amount of energy 

stowed in a region of space or given system per unit volume. 

Power density represents extent of unit volume power. 

Ragone plot in Figure 2 relates performances of various 

electrochemical devices. It shows that ultra-capacitors deliver 

high power, but with limited storage capacity. However Fuel 

Cells store large energy, but have a comparatively low output 

power. 

Relative time taken for charging in or draining out is 

indicated with sloping lines in Ragone plots. Lithium 

batteries have reasonable time for this. An ideal energy 

reservoir must provide high power and energy densities. But 

usually batteries feature ample energy density, but inadequate 

power density. The three traditionally used main WSNs 

technologies are Nickel Metal Hydride (NiMH), Lithium and 

Alkaline batteries. In practice, single sort of storage element 

cannot simultaneously fulfil all favoured characteristics of a 

perfect energy storage system. Hence a hybrid solution is 

much efficient and preferred to overcome the bounds of 

single power reservoir. 

 

Fig. 2. Ragone Plot – Comparison of Battery Technologies 

IV. CONTROLLING THE ENERGY CONSUMPTION 

Here the general energy requirement of the WSNs is 

estimated during the normal signal processing activities. The 

method of CS is employed to save the energy. How to achieve 

energy saving in WSNs with CS is explained in this section.  

A. Sensor Networks - Energy Estimate 

The energy expended by a sensor module is approximated 

as the sum of the energies used for sensing, computation and 

communication. Here the operational energies during one 

sampling period are focused. The energy for communication - 

Ecomn, is the key constituent of the operational energies in 

WSNs. The main components of Ecomn are sleeping, 

listening, transmission, reception and switching energy. 

The total energy in Nyquist measurement (conventional 

sampling) with N number of samples, EtotN can be expressed 

with Equation 1  

EtotN = Esensing + Ecomp+ Ecomn   (1) 

Esensing is the energy for sensing and Ecomp is the 

computational energy required [17] [18]. 

Some of the prevailing techniques for energy management 

are listed below 

 Usage of alternative sources of energy like piezo, solar, 

thermal etc. to cater these the sensor nodes which are 

having limited power supply.  

 Equip with rechargeable power units to enable greater 

flexibility for the nodes.  

 Optimize the transmission medium like optical 

medium, which support less power consumption. 

 Putting the power supply to sleep mode when not in 

use and using the sensors with zero stand-by power.  

 Reduce the computational requirements to maximum 

possible limits  

 The communication of a module with its neighboring 

nodes and base station should be optimized to lessen 

the power consumption including transmission and 

reception power, communication rate, medium of 

communication, type of modulation etc.  

 Design of power aware and application specific 

protocols and algorithms, which will have the 

consideration of obtaining high level for performance 

parameters, maintaining power efficiency.  

 Optimizing the transceiver efficiency to obtain trade-

off between the power consumption and antenna 

efficiency.  

 Effective use of sleep mode for the communication unit 

to curtail the power consumption  

B. Relevance of CS in Signal Processing 

In a normal sensor network, the entire scenario of signal 

processing starts with the initial step of sampling. Here the 

analog signal will be converted in to the digital format by 
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taking samples of the signal. The sampling theorem governs 

the process, which needs a sampling rate of twice the 

maximum frequency of the signal to have an effective 

rebuilding of the input signal known as the Nyquist rate [19], 

[20]. As the sensed signals are generally sparse, this rate is 

too high and creates huge data which makes overheads in 

processing, communication and storage. Most of this data 

will be thrown out after the transform coding stage. 

Managing this high volume of data needs more energy in 

sensing, computation and communication. So one of the 

practical way to lessen the energy expenditure is to decrease 

the managing data volume by adopting to some kind of sub-

Nyquist sampling technique. The CS can play a vital role for 

this. 

Compressive sensing present a state-of-the-art scheme to 

capture compressible signals at a very low rate which is well 

below the rate specified by Sampling Theorem. This 

technique employs non-adaptive and linear projections which 

can conserve the structure of the sparse signal. Using various 

reconstruction algorithms, through an optimization process, 

the original signal will be regenerated from these projections 

[21] [22]. The idea of CS relays on the sparsity concept. The 

signal is considered sparse if it has only a limited non-zero 

values in comparison with its overall length [23]. For sparse 

data, only these non-zero coefficients need to be stored or 

transmitted in many cases; the rest can be assumed to be zero. 

A signal  is -sparse when it has at most   non-zeros. 

Sparse signal models of this kind can achieve higher levels of 

compression. For CS, if the initial signal is sparse in a known 

frame, the same signal can be recovered from a smaller 

number of compressive measurements [24].  

C. Estimation of Energy Expenditure  with CS 

In this study, the estimation of the energy disbursed by a 

sensor module during CS measurement in a sampling period 

is calculated and it is compared with a normal Nyquist 

measurement. The analysis is performed with some of the 

major reconstruction algorithms. They are Basis Pursuit 

(BP),Orthogonal Matching Pursuit (OMP), Compressive 

Sampling Matching Pursuit (CoSaMP), Subspace Pursuit 

(SP), Belief Propagation (BPn), Expander Matching Pursuit 

(EMP) and Sparse Matching Pursuit (SMP) [25] [26] [27] 

[28] [29]. At the first step, the number of compressive 

measurements (M) required for CS reconstruction is 

calculated for each algorithm for different values of sparsity 

(K). Here the sample Nyquist rate (N) is taken as 100. The 

estimated values are listed in table 2. In CS, the sensor node 

measures only M measurements. This M is lower than N as it 

is a subset of the later. As per CS theory, M will be very low 

if signal is having high sparsity (value of K should be 

low).Using this value, the energy saving can be estimated.  

 

 

 

 

 

TABLE II.  M FOR DIFFERENT K VALUES 

Algorithm 
Equation 

for M 

For 

K=5 

For 

K=10 

For 

K=20 

For 

K=30 

BP K log N 23 46 92 139 

OMP K log N 23 46 92 139 

CoSaMP K log N 23 46 92 139 

SP K log N/K 15 23 33 37 

EMP K log N/K 15 23 33 37 

SMP K log N/K 15 23 33 37 

BPn K log N 23 46 92 139 

The energy used up in a sensor module will be the sum of 

the energies used for sensing, communication and 

computation [30]. N −M measurements, computations and 

communications can be kept back in the process, if CS 

method is adopted. So the total energy savings in 

Compressive Sensing (ECS) can be approximated with 

Equation (2)   

  ECS ≈ (N −M) (Esensing + Ecomp+ Ecomn)   (2)  

D. Results  

The energy saving factor is (N-M)/N, which is the fraction 

of energy saved with CS method compared with Nyquist 

method for a single node. The energy savings factor (N-M)/N 

is calculated for different recovery algorithms with a fixed 

sparsity and N value – 100 and expressed in percentage. Table 

3 and Figure 3 shows the percentage saving in total energy for 

different K values for the testing algorithms. 

 

  

Fig. 3. The Percentage Energy Saving for Different Sparsity Values  
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TABLE III.  M  FOR DIFFERENT K VALUES 

Algorithm 

Percentage Saving in Energy for Different Sparsity (K) 

K=5  
K=1

0  

K=1

5  

K=2

0  

K=2

5  
K=30 K=35 

BP 77 54 30.9 8 -15.1 -38.2 -61.2 

OMP 77 54 30.9 8 -15.1 -38.2 -61.2 

CoSaMP 77 54 30.9 8 -15.1 -38.2 -61.2 

BPn 77 54 30.9 8 -15.1 -38.2 -61.2 

SP 85 77 71.5 68 65.3 63.9 63.3 

EMP 85 77 71.5 68 65.3 63.9 63.3 

SMP 85 77 71.5 68 65.3 63.9 63.3 

 

V. ANALYSIS AND DISCUSSIONS 

The analysis and discussion is divided in to two sections. 

The first section deals with the renewable energy sources and 

the second section deals with energy consumption controlling 

with CS. 

A. Energy Harvesting Methods  

The renewable energy harvesting methods will replace the 

batteries in future to realize the independent power supply of 

the wireless sensor nodes. In addition, there are some other 

advantages in employing them like noise reduction, 

elimination of cross-talks,etc. All these power sources are 

renewable, clean, and available limitlessly in the environment. 

Table 4 shows comparison of the power density for different 

renewable energy sources. Solar energy generates 

comparatively higher power.  

TABLE IV.  POWER DENSITY COMPARISON FOR DIFFERENT 

SOURCES 

Harvesting Method Power Density (/cm3) 

Solar Energy (Outdoor – Bright Day) 15mW 

Solar Energy (Outdoor – Cloudy Day) 0.15mW 

Solar Energy (Indoor) 10-100µW 

Vibrations (Piezoelectric) 330µW 

Vibrations (Electrostatic Conversion) 0.021µW (105 Hz) 

Vibrations (Electromagnetic Conversion) 306 µW(52 Hz) 

Thermoelectric (5 o C Gradient) 40 µW 

Wind Flow 16.2 µW (5m/s) 

Acoustic Noise 960nW-100dB 

Magnetic Field Energy 130 µW - 200 µT, 60 Hz 

 

But these methods are having some limitations also. They 

have low conversion efficiency and power output as evident 

from table 4. Most of the energy sources are not stable. There 

should be enough ambient energy to ensure continuous 

operation of the device. When compared with the cost of 

batteries, the micro-power generators are costly. The size of 

the system should be reduced to maximum level to match 

with sensor nodes to adapt with different applications. The 

energy harvested from a single method is normally small and 

extremely unstable with working conditions, time and 

location. Generally, many different available energy sources 

exists simultaneously in the harvesting environment. So 

integration of different types of energy harvesting modules 

for one sensor node is advisable to guarantee a stable flow of 

necessary energy from environment.  

B. Energy Consumption Control  

Based on the value of M, the selected algorithms can be 

divided in to two groups for the sake of analysis. Group one 

consists of BP, OMP, CoSaMP and BPn. Group two have SP, 

SMP and EMP. From Figure 3 and Table 3, it can be clearly 

observed that as K increases, the saving of energy decreases 

for both classes. For group 1 algorithms, the energy saving 

performance is higher at low value of sparsity. When K =5, 

the saving in energy is 77%. But when K=10, the energy 

saving shows a considerable declining and the value is 54. 

For K=20, the energy saving is very low. It is only 8%.  

For group 2 algorithms, the decrease in ECS is lesser 

compared to group 1. When the K value increases to more 

than 20, the compression performance of the group 1 

algorithms is reversed and it became negative value. This 

negative value indicates that the M is greater than Nyquist 

rate (M>N). The energy expenditure needed for this will be 

more than that needed for Nyquist rate measurements. So 

group 2 algorithms are more efficient than others. It is 

because of the fact that their M values are low. The 

algorithms with low M values are better than others as they 

need lesser measurements for reconstruction. Even at fairly 

high value of K, they exhibit compression and subsequent 

reduction in energy expenditure.  

If CS is instigated for multiple nodes, then this needs to 

multiply with hop counts compared to baseline non-

compression-based N communications. Applying this 

approach at the multi-node level, N2-MN communications can 

be saved compared with baseline N2 communications. Here M 

is the sampling nodes out of N available nodes. These savings 

come at the cost of additional computational energy cost in 

obtaining the measurement matrix, which is normally 

neglected, being very small.  

VI. CONCLUSION 

Energy management is a vast topic and will continue to be 

a critical issue for WSNs.  In this paper, two different 

methods for optimizing energy usage were examined - usage 

of renewable energy harvesting methods and reducing the 

energy usage. The growing energy requirements for WSNs 

can be satisfied to a certain extent with the latest battery 

technologies and renewable energy sources. These sources 

offer great advantages over the conventional methods. But 

still most of the technologies are in the primitive stages only. 

It require proper integration of different harvesting sources to 

ensure the uninterrupted power for WSNs.  Along with this, 

the reduction of the processing data can contribute 

considerably to the saving of energy. From the study, when 

the number of measurements are reduced due to CS, there can 

be considerable reduction in energy expenditure. For low 

values of sparsity (for highly sparse signals), the percentage 

saving in energy will be maximum. So for the same sensor 

network, keeping all the network elements same, the 

consumed energy will be decreased considerably by using CS 
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framework. Subsequently the battery life, battery replacement 

cost, hardware life etc. will be having advantages. So by 

applying CS techniques in sensor networks, the energy 

expenditure can be managed effectively. There are other 

factors like routing and access control protocols, localization, 

time synchronization, coverage control, duty cycle 

scheduling: incremental activation, which influences the 

energy management, which are not considered directly in this 

paper. But all the effect of these factors will be decreased by 

the reduction of data using the CS technique.  
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