

Xml Duplicate Detection over Bayesian Network Using

Decision Tree Induction Algorithm

 S. Krishnakumar

 IV Semester, ME, Dept of CSE
 k.Ramakrishnan college

of Technology

 Trichy

Abstract— Duplicate detection is a nontrivial task because the

duplicates are not exactly equal they are more or less equal and

also structure of the xml also varies from one xml data with other

which represent the same real world object. To find duplicates in

xml data is done by Decision tree induction algorithm which

removes accurate matching xml data and incomplete data. Thus it

reduces the number of records to classify. From the output of

Decision tree induction algorithm, Bayesian network is created to

obtain the probability of two xml objects being duplicates. To

improve the efficiency of the evaluation, a novel pruning strategy

is used. The efficiency and effectiveness is high because duplicate

detection is done in two levels one by the Decision tree induction

algorithm and then by Bayesian network which is reduced by

pruning.

Keywords— Decision tree induction algorithm, Bayesian

network, Network pruning, Data cleaning

1. INTRODUCTION

XML is increasingly popular, especially for data published on

the Web and data exchanged between organizations. XML data

is semi-structured and is organized hierarchically.

Fuzzy Duplicate detection is of critical practical

relevance in many applications, including data cleaning data

integration and personal information management. The most

prominent application area for duplicate detection is customer

relationship management (CRM), where multiple entries of the

same customer can result in multiple mailings to the same

person, incorrect aggregation of sales to a certain customer,etc.

Other application areas include bioinformatics, catalog

integration, and in general any domain where independently

collected data is integrated. Ironically, the problem has been

considered under various names, e.g., record linkage,

merge/purge, reference reconciliation, or entity resolution

In this paper, we refer to the problem as fuzzy

duplicate detection, or duplicate detection for short.The word

Fuzzy implies that the result of matching two xml datas is not

exactly true or false.the result lies between true and false

therefore it is between 0 to 1. If the result obtained is more than

Threshold value then it is taken as true and less than threshold

value means it is taken as false. Duplicate detection has been

studied extensively for relational data stored in a single table .

In this case, the detection strategy typically consists in

comparing pairs of tuples (each tuple representing an object)

by computing a similarity score based on their attribute

values.This will not suit duplicate detection in xml data

because the content of xml data may be different but still

represents the same object. The xml data is taken from

different source, the content and structure of the xml data may

vary but they represent same entity. The content of the xml

varies due to the errors, different semantics and misspelling.

Example of XML data with content and structural difference is

shown below.

 (A)

(B)

 person

person

name age

name

details

JohnSmith

25 Smith,john

age

25

 Fig. 1.1 Two xml elements represent same person

 Fig. 1.1 represents the xml data difference occurs in

the name element, which is spelled in document (A) as John

Smith, while in document (B) it is Smith, John. To find out that

John Smith and Smith, John represent the same name, a simple

string comparison is not sufficient. A string similarity function

is required to discover that these two strings represent the same

information. Such similarity functions get two strings as input

and return a value indicating how similar (or how different)

they are. Some well-known similarity functions are Edit

Distance, Jaro-Winkler, Monge-Elkan and SoftTF.IDF, among

others. When such functions are used, we usually consider that

the input strings match if their similarity value is above a

certain threshold. Structural difference exits in the above

example. In document (A) the age element is embedded in to

person element,but in document(B) the age element is

embedded in to details element. The structural difference can

be identified from the DTD(Document Type Descriptor).

 The method we present in this paper uses the

Decision induction tree to remove the xml records which has

missing values and the xml records which are exactly

duplicate. The classifier Decision induction tree reduces the

2118

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052127

International Journal of Engineering Research & Technology (IJERT)

number of records that is stored thus it reduces the number of

comparison made in the Bayesian network. string similarity

function takes longer time to compare the strings, to avoid

unnecessary comparison a technique called Network pruning

is used.

Structure. This paper is organized as follows: Section

2 presents related work. Section 3 summarizes overall

architecture of system. Section 4 describes the classifier

Decision tree induction. Section 5 describes the Bayesian

network formation. To accelerate the evaluation of Bayesian

network by pruning is presented in Section 6.Finally, in

Section 7 we conclude and present suggestions for future work.

2. RELATED WORK

Only more recently research been performed with the

specific goal of discovering duplicate object representations in

XML databases [1], [2], [3], [4], [5]. These works differ from

previous approaches since they were specifically designed to

exploit the distinctive characteristics of XML object

representations: their structure, textual content, and the

semantics implicit in the XML labels. We briefly describe the

main features of these methods here.Comparison of xml

elements based on parents, children and structure is discussed

in [1].Heuristics is proposed to choose any one of the above. It

consists of three modules namely candidate definition,

duplicate definition and duplicate detection. the first two

provide the definitions necessary for duplicate detection (i.e.,

the set of object representations to compare and the duplicate

classifier to use), the third component includes the actual

algorithm. Demerit is Heuristics selection is non automatic.
The similarities between two nodes are calculated by element’s

content, node’s name and node’s path in [2]. The problem of

defining which parts of two xml data contain the same

information is solved. It focuses only on effectiveness not in

efficiency.

In [3], not only the duplicate status of children is

considered, also the Probability of descendants being duplicate

is also considered. Bayesian Network is able to accurately

determine the probability of two xml objects being duplicate in

[3].Demerit is run time is high. It is effective but has less

efficiency. The work done in our proposed method is to

increase the efficiency of the duplicate detection done in

Bayesian network by using Decision tree induction

classification and pruning Network.

The problem of integrating xml data through correlations

realized as join operations is done in [4]. Lower and upper

bounds for the tree edit distance metric between two trees are

calculated. It focuses only on Focus only on efficiency and not

in effectiveness. In [5] Tree edit distance is computationally

infeasible for unordered data. Hence new distance for xml data

called structure aware xml distance is proposed based on the

concept of overlays. An overlay between two XML trees U and

V is a mapping between their nodes, such that a node u which

belongs to U, is mapped to a single node v which belongs to V

if, and only if, they have the same path from the root. This

measure is then used to perform a pairwise comparison

between all candidates. If the distance measure determines that

two XML candidates are closer than a given threshold, the pair

is classified as a duplicate.

3. OVERALL ARCHITECTURE

Fig.3.1. Overall Architecture of duplicate detection.

Fig.3.1 represents the overall architecture of duplicate

detection. The xml data is processed by Decision tree induction

to remove accurate duplicates and xml data whose values are

missing. This process reduces the amount of work done by

Bayesian network and Network pruning by reducing the xml

data to compare.

The classified xml data are given to construct the

Bayesian model, from where the four types of conditional

probabilities are calculated. To evaluate the conditional

probabilities string similarity function is used.string similarity

function is a costly process because it takes more time and

reduces the efficiency of the system. To improve the efficiency

of the system Network pruning is used. It reduces the number

of comparison by following strategy like sorting and

computing the conditional probability of the system whenever

the string similarity function is calculated. If the conditional

probability has reached less than the threshold value then the

comparison is stopped and the xml data is declared as non

duplicate. Thus the comparison of xml data is stopped in

midway and increases the efficiency of the system.

The duplicate xml data is removed and only non

duplicate is stored. This improves the memory usage utility and

increases the searching process faster while retrieving the data.

Thus it increases the optimization of memory. The duplicate

detection of xml data is done effectively and efficiently. Recall

and precision are used to evaluate the effectiveness of our

system. Time consumption is evaluated to know the efficiency

of the system. If it takes less time to execute, then the

algorithm is more efficient.

4. DECISION TREE INDUCTION

Decision tree is formed to match the new xml data with the

existing xml data. Comparing new data with every xml data

takes longer time so it reduces the efficiency of the duplicate

detection. To reduce the time, Decision tree induction is formed

Bayesian Model
/NP

2119

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052127

International Journal of Engineering Research & Technology (IJERT)

from the existing xml data. The new xml data is compared with

the Decision tree from the root to the leaf where the new data

matches the path from root to the leaf.

4.1 Decision Tree Induction Construction

Decision tree builds classification or regression models in the

form of a tree structure. It breaks down a dataset into smaller and

smaller subsets while at the same time an associated decision

tree is incrementally developed. The final result is a tree

with decision nodes and leaf nodes. A decision node (e.g.,

Outlook) has two or more branches (e.g., Sunny, Overcast and

Rainy). Leaf node (e.g., Play) represents a classification or

decision. The topmost decision node in a tree which corresponds

to the best predictor called root node. Decision trees can handle

both categorical and numerical data

4.1.1 Entropy

A decision tree is built top-down from a root node and involves

partitioning the data into subsets that contain instances with

similar values (homogenous).entropy is used to calculate the

homogeneity of a sample. If the sample is completely

homogeneous the entropy is zero and if the sample is an equally

divided it has entropy of one. If the entropy is more than zero

then the attribute has to be split and if it is zero then the attribute

becomes leaf.

 ENTROPY (T) =

 ENTROPY (T,X)=

4.1.2 Information Gain

Information gain is calculated to select the attribute as a node

from the set of attributes. Otherwise it is also said that it can be

used to calculate the splitting attribute. Other methods to find the

splitting attribute are Gain Ratio, Gini Index and Minimum

Description Length. In this paper we use Information Gain as the

splitting attribute.

 GAIN (T, X) = ENTROPY (T)-ENTROPY (T, X)

Where T is the Target attribute and X is one of the attribute of

the xml data. The information gain is based on the decrease in

entropy after a dataset is split on an attribute. Constructing a

decision tree is all about finding attribute that returns the highest

information gain (i.e., the most homogeneous branches).The

attribute which has highest information gain is considered as a

node.

4.1.3 Splitting Criteria

The splitting criteria is set to make branch out of the node. It

depends on the value of the attribute i.e. node. If the value is

discrete then the node is split according to the values of the

node.If the value is continuous then split point is found. The

branches are made by values greater than split point and values

lesser than split point.

Fig.4.1. Example of Decision Tree

4.2 Decision Tree Induction Algorithm

Input: Dataset of xml data

Step 1: Calculate entropy of the target.

Step 2: The dataset is then split on the different attributes. The

entropy for each branch is calculated. Then it is added

proportionally, to get total entropy for the split. The resulting

entropy is subtracted from the entropy before the split. The result

is the Information Gain.

Step 3: Choose attribute with the largest information gain as the

decision node.

Step 4: Branches from decision node is done by split criteria.

Step 5: A branch with entropy of 0 is a leaf node. Then further

splitting of node is avoided.

Step 6: A branch with entropy more than 0 needs further

splitting.

Step 7: The algorithm runs recursively on the non-leaf branches,

until all data is classified.

5. BAYESIAN NETWORK MODEL

Bayesian networks provide a graphical formalism to explicitly

represent the dependencies among the variables of a domain,

thus providing a concise specification of a joint probability

distribution. This representation is based on a directed acyclic

graph where a set of random variables makes up the nodes of

the network and a set of directed links connects pairs of nodes.

In this graph, an edge from one node to another means that the

first has a direct influence on the second. This influence is

quantified through a conditional probability distribution

function correlating the states of each node with the states of its

parents.

p jlog2

m

1j
ip

)(Entropy
T

)A(valuesv
v

v

x
x

2120

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052127

International Journal of Engineering Research & Technology (IJERT)

5.1 Bayesian Network Construction Algorithm

Input: Two sets of xml trees u and u1.u contains (t,v,c)and u1

contains(t1,v1,c1)

 t-root,v-(attribute,value),c-sub tree

Step 1: If t has value node then create a node of label V and

place as left child of t.

Step 2: Place the attributes value as a child of node V

Step 3: If t has children .create a node of label c and repeat

step1.

Step 4: If nodes are of same type, create a node ac and create

children as equal to number of same type in left tree. Repeat

the step 1.

Step 5: Bayesian Network is constructed.

5.2 Computing the Probabilities

5.2.1 Prior Probabilities

Prior probabilities can be defined based on a similarity function

sim(.) between the values, normalized to fit between 0 and 1.

However, it is sometimes not possible, or not efficient, to

measure the similarity between two attribute values. In this

case, we define the probability as a small constant ka, named

the default probability, representing the possibility of any two

values being duplicates before we observe them. Other

similarity function exists are Edit Distance, Jaro-Winkler,

Monge-Elkan and SoftTF.IDF.choosing efficient similarity

function will enhance the effectiveness and efficiency of the

duplicate detection.

5.2.2 Conditional Probability

Conditional probability 1 (CP1): The probability of the values

of the nodes being duplicates, given that each individual pair of

values contains duplicates. if all attribute values are duplicates,

we consider the XML node values as duplicates. if none of the

attribute values are duplicates, we consider the XML node

values as nonduplicates; 3) if some of the attribute values are

duplicates, we determine that the probability of the XML nodes

being duplicates equals a given value, wa.

Conditional probability 2 (CP2): The probability of the

children nodes being duplicates, given that each individual pair

of children are duplicates. The more child nodes in both trees

are duplicates, the higher the probability that the parent nodes

are duplicates.

Conditional probability 3 (CP3): The probability of two nodes

being duplicates given that their values and their children are

duplicates.

Conditional probability 4 (CP4): The probability of a set of

nodes of the same type being duplicates given that each pair of

individual nodes in the set is duplicates.

5.2.3 Final Probability

Once all prior and conditional probabilities are defined, the

Bayesian network can be used to compute the probability of

two XML trees being duplicates, i.e. P(t), where t is the tag for

the root node of both trees. Final probability is calculated by

product of value node and child node of the root node. If the

final probability is more than the threshold value then the xml

data is duplicate else the xml value is not duplicate.

6. NETWORK PRUNING

To compute the final probability one needs to analyze the

whole network and calculate the probabilities for every node.

This process, which has a complexity of O(n*m), where n and

m are the number of nodes in each XML tree being compared,

can be time consuming, especially if we are dealing with a

large network. However, when performing duplicate detection,

we are usually interested only in objects whose duplicate

probability is above a given threshold. This allows us to

optimize the network evaluation process. In this section, we

propose a novel strategy to reduce the time spent on the BN

evaluation.

6.1 Network Pruning Algorithm

Input: Node N from the Bayesian network and has user defined

threshold value T.

Step1: Get the parent nodes of N, sort it and assign duplicate

probability score as 1.

Step2: If the parent node is a value node, it’s probability score

is it’s similarity value.

Step3: Multiply the probability score of value with the

assigned children’s probability (1).assign this value to current

score.

Step4: If the current score is less than the T then stop network

evaluation.

Step5: Else if current score is greater than T then compute

recursively with new threshold value

Step6: The output is current score.

Note: New Threshold value =T/current score

6.2 Sorting Nodes

By choosing the appropriate order by which to evaluate the

nodes, we can assure that the algorithm makes the minimal

number of calculations, before deciding if a pair of objects is to

be discarded. we propose three such heuristics: sorting by

depth, by average string size, and by distinctiveness. Each of

these heuristics corresponds to a different way of ordering the

nodes in step 1 of Network Pruning Algorithm, as explained in

the following.

The most important information is usually stored in nodes

that are placed closer to the root, while nodes with less

distinctive power are stored in deeper levels. Therefore, by

ordering the nodes according to the depth of the branch to

which they belong, we cause the more distinctive nodes to be

evaluated first. First evaluating nodes whose values have a

smaller average string length. The idea is simply to perform the

cheaper comparisons first, expecting that non duplicate nodes

to be discarded before the longer strings have to be compared.

We should note that, since shorter strings are more likely to be

similar than larger strings, this node ordering could delay the

2121

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052127

International Journal of Engineering Research & Technology (IJERT)

reaching of the cut-off threshold. However, we expect the

cheaper string comparisons to compensate for the increment in

the number of compared strings.

The final heuristic consists in sorting the nodes according

to their distinctiveness. We define the distinctiveness of a node

n as log(A/dn), where A is the total number of objects

containing node n and dn is the number of distinct values of

node n. This measure follows the idea that nodes with a high

number of distinct values are less likely to be similar and thus

should be evaluated first. We note that the overhead introduced

by the pre computation of these heuristics is negligible.

7. PERFORMANCE EVALUATION

The performance evaluation is done on different set of xml

data. The efficiency of our modified XMLDup is calculated,

compared with previous method Dogmatix and shown in

graphical form as follows

 Fig.7.1. Comparison of Dogmatix and Modifed XMLDup

The Fig.7.1 shows the comparison of performance between the

Dogmatix and Modified XMLDup.our proposed system,

modified XMLDup outperforms previous method Dogmatix in

terms of efficiency.That is our proposed method runs faster

than the previous method Dogmatix.

 Our proposed method runs faster than previous

method Dogmatix because of the usage of Decision Tree

Induction algorithm which eliminates the accurate matching

xml data and missing information, thus avoiding unnecessary

formation of Bayesian network, which is followed by Network

pruning. Even though usage of Decision Tree Induction

algorithm is an overhead, but it still increases the performance

of the duplicate detection.

8. CONCLUSION

Decision tree induction is created from the existing xml data.

The new xml data is matched with the path of the Decision

tree. The node of the path is matched with the value of the xml

data. If the values match exactly then the new tuple is not

stored. Thus optimization of memory is done. The classified

xml data is given to construct the Bayesian network. Prior

probability, Conditional probability and Final probability is

calculated. Evaluation of probabilities of every node reduces

the efficiency hence Network pruning is used to increase the

efficiency, sorting of nodes done in the pruning process

reduces the computation time thus increasing the efficiency.

 The future work of this paper is implementing the xml

duplicate detection by other machine learning algorithm which

increases the efficiency and effectiveness of the duplicate

detection.

REFERENCES

[1]. M. Weis and F. Naumann, “Dogmatix Tracks Down Duplicates in

XML,” Proc. ACM SIGMOD Conf. Management of Data, pp. 431-442,
2005.

[2]. A.M. Kade and C.A. Heuser, “Matching XML Documents in Highly
Dynamic Applications,” Proc. ACM Symp. Document Eng. (DocEng),

pp. 191-198, 2008.

[3]. L. Leitao, P. Calado, and M. Weis, “Structure-Based Inference of XML
Similarity for Fuzzy Duplicate Detection,” Proc. 16th ACM Int’l Conf.

Information and Knowledge Management, pp. 293-302, 2007.

[4]. S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava, and T.
Yu,“Approximate XML Joins,” Proc.ACM SIGMOD

Conf.Management of Data,2002.

[5]. D. Milano, M. Scannapieco, and T. Catarci, “Structure Aware XML
Object Identification,” Proc. VLDB Workshop Clean Databases

(CleanDB), 2006.

[6]. P. Calado, M. Herschel, and L. Leitao, “An Overview of XML
Duplicate Detection Algorithms,” Soft Computing in XML Data

Management, Studies in Fuzziness and Soft Computing, vol. 255.2010

[7]. S. Puhlmann, M. Weis, and F. Naumann, “XML Duplicate Detection
Using Sorted Neighborhoods,” Proc. Conf. Extending Database

Technology (EDBT), pp. 773-791, 2006.

[8]. L. Leita˜o and P. Calado, “Duplicate Detection through Structure
Optimization,” Proc. 20th ACM Int’l Conf. Information and Knowl-

edge Management, pp. 443-452, 2011.

[9]. J.C.P. Carvalho and A.S. da Silva, “Finding Similar Identities among
Objects from Multiple Web Sources,” Proc. CIKM Workshop Web

Information and Data Management (WIDM), pp. 90-93, 2003.

[10]. L. Chen, L. Zhang, F. Jing, K.-F. Deng, and W.-Y. Ma, “Ranking Web
Objects from Multiple Communities,” Proc. 15th ACM Int’l Conf.

Information and Knowledge Management, pp. 377-386, 2006.

2122

Vol. 3 Issue 5, May - 2014

International Journal of Engineering Research & Technology (IJERT)

IJ
E
R
T

IJ
E
R
T

ISSN: 2278-0181

www.ijert.orgIJERTV3IS052127

International Journal of Engineering Research & Technology (IJERT)

