- Open Access
- Authors : Mayuri M. Baviskar , L. G. Kalurkar
- Paper ID : IJERTV9IS070393
- Volume & Issue : Volume 09, Issue 07 (July 2020)
- Published (First Online): 22-07-2020
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Storey Response of G+40 Horizontally Connected Buildings with Dampers
Mayuri M. Baviskar
Department of Civil Engineering MGMs Jawaharlal Nehru Engineering College
Aurangabad, Maharashtra, India
Prof. L. G. Kalurkar
Department of Civil Engineering MGMs Jawaharlal Nehru Engineering College
Aurangabad, Maharashtra, India
Abstract Analyzing the response of structure to ground shaking caused by an earthquake is one the most important application of structural dynamics. Tall structures are more exposed to dynamic loads, earthquake and wind effects. Tall buildings are characterized by low natural frequency. Hence, they can vibrate significantly under lateral dynamic earthquake loads. This paper deals with the analysis of G+40 storey buildings connected horizontally with the truss bridge at 21st and 31st storey having fixed base and shows the storey response curves of buildings connected with dampers and without dampers. The building frame type used is ordinary moment resisting frame (OMRF). The dampers used are fluid viscous dampers (FVD) having force capacity of 500KN. The analysis is done using ETABS V16 software.
Keywords Dampers, fluid viscous damper, storey response curve, fixed base, seismic response, ordinary moment resisting frame, ETABS V16.
structure can all collapse or part collapse or wont collapse throughout or after earthquake, time history analysis is required to perform. The results obtained from analysis are studied to know the actual behavior of structure.
I.INTRODUCTION
As the business activities demands to be on the point of one another and at the town centre, tall buildings get a lot of attention in todays life. Also, because they form distinctive landmark, tall buildings are oftentimes developed in town centers as status image for company organization. Due to the speedy increase in population and reduction in accessibility of land, vertical accommodation is obtaining a lot of preference which is resulting in vertical town development. The higher land costs, reduction in urban sprawl and for agricultural production, residential buildings are growing upward. Buildings are designed primarily to serve the needs of occupancy whether residential or commercial. At the same time, clients requirement regarding aesthetic qualities plays important role.
The modeling of high rise structure for analysis is depends on the approach of research. The bottom shaking that occurs in an earthquake are often represented as a series of multidirectional random acceleration pulses. The seismal response of tall building will depend on the dynamic properties of the structure, ground motion at the foundation and mode of soil structure interaction. Response spectrometry shows that how the structure will respond if damping is elicited. Various curves are developed with different levels of damping. As damping increases, response spectra shift downward. As per typical earthquake resistant design, structure is designed for forces which are much less than the actual design earthquake forces. Therefore, throughout earthquake event, structure undergoes severe non resilient deformation with non repairable damages. RCC structure can be made ductile with the help of reinforcing steel. Thus, to grasp whether or not the
Fig 1: Real horizontally connected structures.
-
EXAMPLE BUILDING
Building set up chosen for this project is as shown in figure below. Two buildings are connected by a truss bridge of 50m length at twenty first floor and thirty first floor. The structure is built with ordinary moment resisting frame (OMRF). Both buildings are symmetric to each other and considered to be served as residential building. Building is having forty storeys for accommodation purpose and top story as terrace. The columns are fixed at base. Two column sizes are utilized in
structure. Column of size 0.85m x 0.65m are used up to 10th storey and 0.75m x 0.55m are used for rest of the storey. Beams having cross sectional size 0.3m x 0.6m. The floor to floor height is kept constant as 3m and slab thickness as 0.18m throughout the structure. 4 lifts are provided at each floor per building. Shear wall of 0.3m thick are used for the lift sections. Concrete grades used are M35 and M40 while steel used is of grade HYSD500. Instead of traditional brick wall Autoclave Aerated Concrete (AAC) Blocks are used as wall having unit weight ranging from 4.6 kN/m3 to 7.5 kN/m3 which is almost 1/3rd of normal concrete. Building is analyzed for all zones for earthquake. Load combinations are taken as per IS 456:2000 and earthquake loading is taken as per IS 1893:2002. Load combinations used are listed below: 1.5(DL+LL)
1.5(DL±EQx)
1.5(DL±EQy)
1.5(DL±WLx)
1.5(DL+±WLy)
1.2(DL+LL±EQx)
1.2(DL+LL±EQy)
1.2(DL+LL±WLx)
1.2(DL+LL±WLy)
0.9DL±1.5EQx
0.9DL±1.5EQy
Fig 2: 3-D view of G+40 building.
-
Fluid Viscous Dampers:
The fluid viscous dampers are hydraulic devices that dissipate the mechanical energy of seismal events and cushion the
impact between structures. Theyre versatile and might be designed to permit free movement in addition as controlled damping of a structure to safeguard from wind load, thermal motion or seismic events. The fluid viscous damper is consisting of oil cylinder, piston, piston rod, lining, medium, pin head and other main parts. The piston may create mutual motion within the oil cylinder. The piston is provided with damping structure and therefore the oil cylinder is jam-packed
with fluid damping medium. Once the external stimulation (such as earthquake, wind vibration) reaches to the engineering structure, itll be deformed and drive the damper to move, which will occur the pressure difference on the different side of the piston. Then the medium can undergo the damping structure and make damping power, which will occur the exchange of power (the mechanical power exchange to heat power). All which will reach the aim of reducing the engineering structures vibration.
Fig 3: schematic diagram of Fluid Viscous Damper
Damper system are designed and made to safeguard structural integrities, management and stop structural damages by fascinating seismic energy and reduces deformations within the structure. Due to easy installation, adaptability, coordination with other members and variety in their sizes, viscous dampers have several applications in planning and retrofitting..
In this project, each building is connected with 6 fluid viscous dampers at alternate floors. Dampers having capacity of 500kN are used. Table showing damper capacity is shown below:
TABLE 1: FVD WITH DIFFERENT CAPACITIES FORCES (KN)
Force (kN)
Spherical Bearing Bore Diameter (mm)
Stroke (mm)
Clevis Thickness (mm)
Weight (kg)
250
38.10
±75
43
44
500
50.80
±100
55
98
750
57.15
±100
59
168
1000
69.85
±100
71
254
1500
76.20
±100
77
306
2000
88.90
±125
91
500
3000
101.60
±125
117
800
4000
127.00
±125
142
1088
6500
152.40
±125
154
1930
-
Response Spectrum Analysis:
Response spectra are curves plotted between maximum response of system subjected to specified earthquake ground motion and its time period (or frequency). Response spectrum can be interpreted as the locus of maximum response of a system for given damping ratio. Response spectra thus helps in obtaining the peak structural responses under linear range, which can be used for obtaining lateral forces developed in structure due to earthquake thus facilitates in earthquake-
25th floor
41.141
50.107
24th floor
39.152
47.836
23rd floor
37.285
45.539
22ndfloor
35.258
43.221
21st floor
33.373
40.888
20th floor
31.328
38.545
19th floor
29.446
36.199
18th floor
27.405
33.859
17th floor
25.545
31.533
16th floor
23.534
29.226
15th floor
21.718
26.941
14th floor
19.75
24.68
13th floor
17.997
22.449
12th floor
16.093
20.254
11th floor
14.426
18.102
10th floor
12.608
15.998
9th floor
11.054
13.951
8th floor
9.348
11.968
7th floor
7.94
10.059
6th floor
6.377
8.236
5th floor
5.17
6.511
4th floor
3.793
4.901
3rd floor
2.82
3.479
2nd floor
1.743
2.203
1st floor
1.067
1.13
PL
0.298
0.343
GL
0.105
0.044
Base
0
0
25th floor
41.141
50.107
24th floor
39.152
47.836
23rd floor
37.285
45.539
22ndfloor
35.258
43.221
21st floor
33.373
40.888
20th floor
31.328
38.545
19th floor
29.446
36.199
18th floor
27.405
33.859
17th floor
25.545
31.533
16th floor
23.534
29.226
15th floor
21.718
26.941
14th floor
19.75
24.68
13th floor
17.997
22.449
12th floor
16.093
20.254
11th floor
14.426
18.102
10th floor
12.608
15.998
9th floor
11.054
13.951
8th floor
9.348
11.968
7th floor
7.94
10.059
6th floor
6.377
8.236
5th floor
5.17
6.511
4th floor
3.793
4.901
3rd floor
2.82
3.479
2nd floor
1.743
2.203
1st floor
1.067
1.13
PL
0.298
0.343
GL
0.105
0.044
Base
0
0
resistant design of structures. The three spectra i.e. displacement, pseudo velocity and pseudo acceleration provide the same information on the structural response. However, each one of them provides a physically meaningful quantity and therefore, all three spectra are useful in understanding the nature of an earthquake and its influence on the design. A combined plot showing all three of the spectral quantities is possible because of the relationship that exists between these three quantities.
-
Time History Analysis:
The actual method of mixing the various modal contributions is a probabilistic averaging technique and in some cases, results will not represent the actual behaviour of structure. Time history analysis overcomes this. However, it needs massive procedure efforts. The tactic consists of a step by step direct integration in which the time domain is discretized into a number of tiny increments and for every quantity the equation of motion is solved with the displacements and velocities of the previous step serving as initial functions. The tactic is applicable to both elastic and inelastic analyses. In elastic analysis, the stiffness characteristics of structure are assumed to be constant for whole duration of the earthquake. In inelastic analysis, the stiffness is assumed to be constant through the progressive time solely.
The proposed building in Zone V with site condition III is analysed for both response spectrum and time history analysis with time history data of El-Centro earthquake in 1940. The analysis is done for with damper condition and without damper condition also. 5% damping is allowed in the structure. The graphs of Spectral Displacement Vs Period, Pseudo Spectral Velocity Vs Period and Pseudo Spectral Acceleration Vs Period are obtained which are shown in result section.
-
-
RESULTS
The proposed building in analyzed in different zones of earthquake and the displacement value of each storey are tabulated for with damper and without damper condition for each zone. Chart 1 shows the displacement values of building in Zone II with site type I. Chart 2 shows the displacement values of building in Zone III with site type III. Chart 3 shows the displacement values for Zone IV with site type II and chart 4 shows displacement values for Zone V with site type III.
Storey
With Damper
Without Damper
top
66.266
79.234
40th floor
65.392
77.96
39th floor
64.115
76.563
38th floor
62.787
75.087
37th floor
61.397
73.549
36th floor
59.954
71.944
35th floor
58.478
70.269
34th floor
56.919
68.524
33rd floor
55.357
66.709
32ndfloor
53.686
64.828
31st floor
52.042
62.884
30th floor
50.269
60.88
29th floor
48.551
58.82
28th floor
46.69
56.707
27th floor
44.907
54.548
26th floor
42.974
52.346
Storey
With Damper
Without Damper
top
66.266
79.234
40th floor
65.392
77.96
39th floor
64.115
76.563
38th floor
62.787
75.087
37th floor
61.397
73.549
36th floor
59.954
71.944
35th floor
58.478
70.269
34th floor
56.919
68.524
33rd floor
55.357
66.709
32ndfloor
53.686
64.828
31st floor
52.042
62.884
30th floor
50.269
60.88
29th floor
48.551
58.82
28th floor
46.69
56.707
27th floor
44.907
54.548
26th floor
42.974
52.346
TABLE 2: STOREY DISPLACEMENT IN ZONE II (X-DIRECTION)
Chart -1(a): Comparison of storey displacement in Zone II (x-direction)
Storey
With Damper
Without Damper
top
144.194
172.414
40th floor
142.293
169.641
39th floor
139.513
166.601
38th floor
136.626
163.389
37th floor
133.599
160.042
36th floor
130.46
156.549
Storey
With Damper
Without Damper
top
144.194
172.414
40th floor
142.293
169.641
39th floor
139.513
166.601
38th floor
136.626
163.389
37th floor
133.599
160.042
36th floor
130.46
156.549
Chart -1(b): Comparison of storey displacement in Zone II (y-direction) TABLE 3: STORY DISPLACEMENT IN ZONE III (X-DIRECTION)
35th floor
127.249
152.905
34th floor
123.855
149.107
33rd floor
120.457
145.16
32ndfloor
116.821
141.066
31st floor
113.243
136.835
30th floor
109.386
132.474
29th floor
105.647
127.992
28th floor
101.597
123.395
27th floor
97.719
118.696
26th floor
93.511
113.905
25th floor
89.523
109.033
24th floor
85.194
104.092
23rd floor
81.131
99.093
22ndfloor
76.721
94.049
21st floor
72.62
88.971
20th floor
68.17
83.873
19th floor
64.074
78.769
18th floor
59.632
73.677
17th floor
55.587
68.616
16th floor
51.21
63.597
15th floor
47.258
58.623
14th floor
42.975
53.703
13th floor
39.162
48.849
12th floor
35.018
44.073
11th floor
31.392
39.39
10th floor
27.435
34.812
9th floor
24.054
30.357
8th floor
20.34
26.042
7th floor
17.277
21.888
6th floor
13.876
17.921
5th floor
11.25
14.168
4th floor
8.254
10.665
3rd floor
6.136
7.57
2nd floor
3.793
4.793
1st floor
2.321
2.459
PL
0.648
0.746
GL
0.229
0.096
Base
0
0
Chart 2(a): Comparison of story displacement in Zone III (x-direction)
Chart 2(b): Comparison of storey displacement in Zone III (y-direction)
TABLE 4: STOREY DISPLACEMENT IN ZONE IV (X-DIRECTION)
Storey
With Damper
Without Damper
top
265.593
317.571
40th floor
262.092
312.463
39th floor
256.971
306.865
38th floor
251.652
300.949
37th floor
246.078
294.783
36th floor
240.296
288.35
35th floor
234.381
281.637
34th floor
228.131
274.643
33rd floor
221.872
267.371
32ndfloor
215.173
259.832
31st floor
208.584
252.038
30th floor
201.48
244.005
29th floor
194.592
235.75
28th floor
187.133
227.283
27th floor
179.989
218.627
26th floor
172.239
209.802
25th floor
164.894
200.829
24th floor
156.92
191.728
23rd floor
149.437
182.521
22ndfloor
141.313
173.23
21st floor
133.761
163.877
20th floor
125.564
154.487
19th floor
118.019
145.086
18th floor
109.838
135.706
17th floor
102.386
126.384
16th floor
94.324
117.14
15th floor
87.046
107.978
14th floor
79.156
98.916
13th floor
72.133
89.976
12th floor
64.499
81.179
11th floor
57.821
72.552
10th floor
50.532
64.121
9th floor
44.306
55.915
8th floor
37.465
47.967
7th floor
31.823
40.316
6th floor
25.559
33.008
5th floor
20.721
26.096
4th floor
15.204
19.644
3rd floor
11.302
13.943
2nd floor
6.987
8.828
1st floor
4.275
4.529
PL
1.193
1.374
GL
0.422
0.176
Base
0
0
Chart 3(a): Comparison of storey displacement in Zone IV (x-direction)
Storey
With Damper
Without Damper
top
430.305
524.387
40th floor
424.678
516.047
39th floor
416.464
506.927
38th floor
407.940
497.3
37th floor
399.004
487.273
36th floor
389.745
476.814
35th floor
380.265
465.902
34th floor
370.256
454.533
33rd floor
360.223
442.712
32ndfloor
349.494
430.453
31st floor
338.926
417.775
30th floor
327.539
404.701
29th floor
316.483
391.258
28th floor
304.514
377.458
27th floor
293.033
363.339
26th floor
280.580
348.931
25th floor
268.760
334.265
24th floor
255.925
319.373
23rd floor
243.863
304.289
22ndfloor
230.761
289.049
21st floor
218.566
273.687
20th floor
205.320
258.241
19th floor
193.112
242.758
18th floor
179.861
227.285
17th floor
167.779
211.885
16th floor
154.689
196.588
15th floor
142.863
181.403
14th floor
130.021
166.357
13th floor
118.580
151.486
12th floor
106.121
136.829
11th floor
95.215
122.426
10th floor
83.285
108.324
9th floor
73.092
94.57
8th floor
61.861
81.223
7th floor
52.589
68.349
6th floor
42.272
56.027
5th floor
34.310
44.347
4th floor
25.189
33.421
3rd floor
18.756
23.749
2nd floor
11.610
15.054
1st floor
7.116
7.732
PL
1.988
2.344
GL
0.703
0.301
Base
0
0
Storey
With Damper
Without Damper
top
430.305
524.387
40th floor
424.678
516.047
39th floor
416.464
506.927
38th floor
407.940
497.3
37th floor
399.004
487.273
36th floor
389.745
476.814
35th floor
380.265
465.902
34th floor
370.256
454.533
33rd floor
360.223
442.712
32ndfloor
349.494
430.453
31st floor
338.926
417.775
30th floor
327.539
404.701
29th floor
316.483
391.258
28th floor
304.514
377.458
27th floor
293.033
363.339
26th floor
280.580
348.931
25th floor
268.760
334.265
24th floor
255.925
319.373
23rd floor
243.863
304.289
22ndfloor
230.761
289.049
21st floor
218.566
273.687
20th floor
205.320
258.241
19th floor
193.112
242.758
18th floor
179.861
227.285
17th floor
167.779
211.885
16th floor
154.689
196.588
15th floor
142.863
181.403
14th floor
130.021
166.357
13th floor
118.580
151.486
12th floor
106.121
136.829
11th floor
95.215
122.426
10th floor
83.285
108.324
9th floor
73.092
94.57
8th floor
61.861
81.223
7th floor
52.589
68.349
6th floor
42.272
56.027
5th floor
34.310
44.347
4th floor
25.189
33.421
3rd floor
18.756
23.749
2nd floor
11.610
15.054
1st floor
7.116
7.732
PL
1.988
2.344
GL
0.703
0.301
Base
0
0
Chart 3(b): Comparison of storey displacement in Zone IV (y-direction) TABLE 5: STOREY DISPLACEMENT IN ZONE V (X-DIRECTION)
Chart 4(a): Comparison of storey displacement in Zone V (x-direction)
Chart 4(b): Comparison of storey displacement in Zone V (y-direction)
TABLE 6: COMPARISON OF MAXIMUM DISPLACEMENTS OF BUILDING (X-DIRECTION)
ZONE
II
III
IV
V
with damper
66.266
144.195
267.07
430.3
without damper
79.234
172.41
317.57
524.387
Chart 5(a): Comparison of maximum displacements of building (x-direction)
TABLE 7: COMPARISON OF MAXIMUM DISPLACEMENTS OF BUILDING (Y-DIRECTION)
ZONE
II
III
IV
V
with damper
66.636
145
265.59
434.029
without damper
90.069
195.96
360.99
601.809
Chart 5(b): Comparison of maximum displacements of building (y-direction)
Building in Zone V is again analysed for time history analysis with time history data of El-Centro earthquake in order to compare the difference in spectral acceleration, spectral velocity and spectral displacement of building for with damper and without damper condition. The obtained response spectrum curves having 5% damping are shown below. Table 7 summarizes maximum and minimum values of acceleration, velocity and displacement at 0% damping and 0.1% damping.
Characteristics
With damper
Without damper
Pseudo spectral Acceleration (mm/sec²)
0%
damping
0.10%
damping
0%
damping
0.10%
damping
4060.08
440.9
7206.58
497.55
Pseudo spectral velocity (mm/sec)
1092.26
2.35
1485
2.5
Spectral displacement(mm)
968.5
0.011
1492.238
0.012
Characteristics
With damper
Without damper
Pseudo spectral Acceleration (mm/sec²)
0%
damping
0.10%
damping
0%
damping
0.10%
damping
4060.08
440.9
7206.58
497.55
Pseudo spectral velocity (mm/sec)
1092.26
2.35
1485
2.5
Spectral displacement(mm)
968.5
0.011
1492.238
0.012
TABLE 8: MAXIMUM AND MINIMUM VALUES OF RESPONSE SPECTRUM CHARACTERISTICS
Fig 4(b): PSA Vs Time period (without damper condition)
-
CONCLUSION
From Table 6 and Table 7 it is observed that by providing dampers overall displacement of building in each zone is considerably reduced. Percentage reduction in displacement for Zone II, Zone III and Zone IV is approximately 16% whereas for Zone V it is approximately 18% for x-direction. On other hand, for y-direction percentage reduction in displacement for Zone II, Zone III and Zone IV is approximately 26% and for Zone V is approximately 28%. From Table 7 it is observed that although having 5% damping in the building, the response spectrum characteristics such as pseudo spectral acceleration, pseudo spectral velocity and spectral displacement are much reduced after the application of dampers in the building. For 0% damping, pseudo spectral acceleration is reduced by approximately 44% while for 0.1% damping it is reduced by approximately 11%. It may be possible to increase the percentage reduction in displacement by increasing the capacity of fluid viscous dampers and the dampers are found to be very effective in reducing earthquake responses.
Fig 4(a): PSA Vs Time period (with damper condition)
-
REFERENCES
-
Pramodini Naik, Satish Annigeri. Performance Evaluation Of 9 Storey RC Building Located In North Goa. 11th International Symposium On Plasticity And Impact Mechanics, Implast 2016.
-
Savita C. Majage, Prof. N. P. Phadtare. Dynamic Analysis And Design of G+8 Storey RC Structure By Providing Lead Rubber Bearing as Base Isolation System. International Research Journal of Engineering and Technology. Volume 05 Issue: 08. Aug 2018.
-
Sayed Mahmoud. Horizontally Connected High Rise Building Under Earthquake Loading. Ain Shams Engineering Journal 10 (2019) 227-241.
-
Ji Dongyu, Li Xiaofen. Seismic Behaviour Analysis of High Rise Connected Structure. International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014).
-
Surendra Chaurasiya, Sagar Jamle. Twin Tower High Rise Building Subjected To Seismic Loading: A Review. International Journal of Advanced Engineering Research And Science. Vol-6, Issue-4, Apr-2019.
-
A.V. Bhaskararao, R. S. Jangid. Seismic Response Of Adjacent Buildings Connected With Dampers. 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada. August 1-6, 2004. Paper No. 3143.
-
S. Shamshad Begum, Dr. G. Vani. Analysis of a High Rise Unsymmetrical Building with Dampers Using Etabs. 2016 Ijsrst, Volume 2, Issue 3.
-
Wensheng LU and Xilin LU, (2000). Seismic Modal Test And Analysis Of Multi-Tower High-Rise Buildings. 12th World Conference on Earthquake Engineering, Pp. 0281.
-
Bryan Stafford Smith, Alex Couli.Tall Building Structures, Analysis and Design.
-
Bungale S. Taranath. Structural Analysis and Design Of Tall Buildings.