- Open Access
- Total Downloads : 21
- Authors : Parthiban P B, Suryaram S, Mahesh. M, Punamalai. A
- Paper ID : IJERTCONV5IS13166
- Volume & Issue : ICONNECT – 2017 (Volume 5 – Issue 13)
- Published (First Online): 24-04-2018
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: This work is licensed under a Creative Commons Attribution 4.0 International License
Strength Characteristics of Hybrid Fibre Reinforced Concrete using Nano Silica
Hybrid Fibre Reinforced Concrete
Parthiban P B, Suryaram S, Mahesh. M, Punamalai. A Department of Civil Engineering Kalasalingam University Virudhunagar, India.
AbstractHybridFiberReinforcedConcrete (HFRC)is formedfromacombination ofdifferenttypesoffibres,which differinmaterial properties,remain bondedtogetherwhen addedinconcreteandretaintheiridentitiesandproperties.
Thecombining offibers,oftencalledhybridization,is investigatedforaM60gradeconcreteatavolumefractionof 4%NanoSilca,Steel fiber(1,1.25,1.5%)andpolypropylene fiber(0.03,0.06,0.09%)inthisproject.Control andfourhybrid fibercomposites werecastusingdifferentfiberproportionsof steelandpolypropylene.Compressive strength,splittensile strengthandflexuralstrengthtest wereperformedandresults wereanalyzedtoassociatewithabove fibercombinations. Basedonexperimental studies,theprojectidentifiesfiber combinations thatdemonstrate maximumcompressive,split tensile andflexuralstrengthofconcrete.Inadditiontothe above,SEM imagesarepresented.
KeywordsFibre,Concrete,HybridFibre,NanoSilica
INTRODUCTION
Acompositecan betermedashybrid, iftwoormoretypesoffibresarerationallycombined ina commonmatrixtoproduceacomposite thatdrivesbenefits fromeachoftheindividuals fibresandexhibitsasynergetic response.Additionofshortdiscontinuous fibresplaysan importantroleintheimprovementofmechanicalpropertiesof Concrete.Itincreaseselasticmodulus; decreasesbrittleness controls cracksinitiationanditssubsequentgrowthand propagation. Deboningandpull outofthefibrerequiremore energyabsorption,resulting inasubstantial increaseinthe toughnessandfractureresistance ofthematerialstothe cyclic anddynamicloads.
-
HistoryofHFRC
The concept of using fibres as reinforcement is not new. Fibreshavebeenusedasreinforcementsinceancient times. Historically,horsehairwasusedinmortar andstrawinmud bricks.Intheearly 1900s,asbestos fibreswereusedin concrete,therewasaneedtofindareplacement forthe asbestos used inthe concreteandotherbuildingmaterialsonce thehealth risksassociatedwiththesubstance werediscovered.
Bythe 1960s,steel, glass,andsynthetic fibressuchas polypropylenefibreswereusedinconcrete, andresearchinto newfibre reinforced concretescontinuestoday.
-
AdvantagesofHybridFibreReinforcedConcrete
-
Toprovide asysteminwhichone typeoffibre,thisis stronger and stiffer, improves the first cracks stress and ultimatestrength,andthesecondtypesoffibre,whichismore flexible,andductile leadstoimprovedtoughnessandstainin thepastcrackingzone.
-
To provide hybridreinforcement inwhichone typeoffibre issmaller, sothatitbridgesthemicrocracksofwhichgrowth canbecontrolled. Thisleadstoahighertensile strengthofthe composite. Thesecondtypeoffibreislarger,sothatitarrests thepropagatingmicrocracksandcansubstantiallyimprove thetoughnessofthecomposite.
-
Toprovideahybridreinforcement,inwhichthedurability offibretypeisdifferent.Thepresenceofthe durablefibrecan increasethestrength andtoughnessrelation after age whilethe othertypeistoguaranteetheshorttermperformance during transportationandinstallationofthecompositeelements.
-
-
ApplicationofHybrid FibreReinforcedConcrete HFRCcanbeusedinanykindofconstruction becauseofits unique Propertiesandalsoasitveryeasytoobtainhighrange ofstrengthvalues.Someofthepioneeringapplications areas follows
-
Bridges.
-
Tunnellinings.
-
Buildingcomponentslikecolumn.
-
Sandwichstructurelikesteelconcretestructure.
-
Thebenefitofhybridfibresinenhancing variouspropertiesof theHFRCinadditiontoNanosilicahasnotbeeninvestigated inthepast andhencetheeffectofhybridfibrescomprising of steel, PP fibres and Nano silica in the HFRC on the mechanical properties and flexural toughness of HFRC is beingexploredinthisresearch.Thus,themainobjectiveof
thisstudyistoinvestigate theeffectofsteel-PPhybridfibres andNanosilicainenhancing themechanicalproperties, flexuralstrengthofHybridFibre Reinforced Concrete(HFRC).
MATERIALPROPERTIES
-
Sieve analysistestfor Fineaggregate
Sieve Size
Weight
Retained (gms)
Cumulative
weight retained
Cumulative
% weight retained
%
Finer
4.75mm
26
26
2.6
97.4
2.36mm
64
90
9.0
91
1.18mm
177
267
26.7
73.3
600µ
260
527
52.7
47.3
300µ
385
912
91.2
8.8
150µ
50
962
96.2
3.8
Pan
38
1000
100
0
Finenessmodulusofthefine aggregate= F/100
= 378.4 /100=3.78
FromIS:383-1970, Table4 (Pg no:11),FineAggregates,
Grading Zone = II
-
SpecificGravityofFineAggregate
W1= 660 g W2
= 1858g W3 =
2090g W4 =
1365g
Hence, SpecificGravity = 2.43
-
Sieveanalysistest forCoarseaggregate
ISSieve Size
Weight retained
%
Weight retained
%Weight passing
Cumulative
Weight retained
80mm
0
0
100
0
40mm
0
0
100
0
20mm
1.86
37.2
62.8
37.2
10mm
1.62
32.4
67.6
69.6
4.75mm
1.52
30.4
69.6
100
2.36mm
0
0
100
100
1.18mm
0
0
100
100
600µ
0
0
100
100
300µ
0
0
100
100
150µ
0
0
100
100
Finenessmodulusofthecoarse aggregate= F/100
= 7.06
-
Specificgravityof coarseaggregate
Emptyweightofthe container (A) = 3.59 kg
Container+coarse aggregate (B) =7.09 kg Container+coarse aggregate+ water (C) =8.38 kg Container+water (D) = 6.1 kg Specificgravity = B-A/[(B-A)-(C-D)] Thespecific gravityofthe coarseaggregate is2.87
-
WaterAbsorption TestforCoarseAggregate
-
Weightof emptybasket =572gms
-
Weightofbasket+gravel=1472gms 3)Weightofbasket+wetgravel =1484gms 4)Weightofbasket+drygravel =1472gms CALCULATION
Ww= (w2-w3)= (1484-1472)
=12
Ws= (w3-w1)=(1472-572)
=900
W= (Ww/ws)=(12/900)
=0.010
Waterabsorption = 1.0%
-
-
Specificgravity ofcement Emptyweightoftheflask W1=0.131 kg Borosil+ water W2= 0. 368 kg
Borosil+ kerosene W3=0.318 kg Borosil+ kerosene+ cement W4=0.364 kg Eptyweightofthecement W5= 0.060 kg
g =W3-W1/W2-W1
=0.789
G =W5/ (W5+W3-W4)× g =3.14.
-
FinenessofCement
ISSieve
Weight
retained(gms)
%Weight
retained
%Finer
90µ
4
4
96
Pan
96
96
4
% Finer= 4%
-
Consistency ofCement
Water%
Water content
Readingin
plunger
24%
81.6
32
26%
88.4
26
28%
95.2
22
30%
102
18
32%
108.8
16
34%
115.6
5
Consistencylimit= 34%
-
SteelFibre Type:Hookedendsteelfibre AspectRatio= 50/1= 50
Steelfibre
0.67*101* 27 = 1826.3 lb/
;
-
PolypropyleneFibre
Polypropylenefibre
-
PropertiesofNano silica
ACI MIXDESIGN
The most common method used in North America is thatestablishedbyACI RecommendedPractice211.1
-
Calculation
-
Select theslumpandrequiredconcretestrength
= = 11224.75 Psi
;
= 77.4 Mpa
-
Select themax sizeofaggregate¾ inch (or)19mm
-
Selecttheoptimumcoarse aggregate
=1083 kg/
-
TakeWatercementratioas0.3
-
Weightof cement
AsperACI211.1Clause6.3.3pgno.8Select approx.mixingwaterandairrequirementis265lb/
Testitem
Standard
requirements
TestResults
Specific Surface
Area (M2/G)
200 +20
202
pH Value
3.7 4.5
4. 12
Loss on
Drying@105 DEG.C(5)
<1.5
0. 47
SieveResidue(5)
<0.04
0. 02
TampedDensityg/L
40 60
44
SiContent(%)
>99. 8
99. 88
CARBON
CONTENT(%)
<0.15
0. 06
Chloride Content (%)
<0.0202
0. 009
<0.03
0. 005
Ti
<0. 02
0. 004
<0. 003
0. 001
ParticleSize
17 NANO
Weightofcement= =885.33lb/ =525 kg/
-
Volumeof coarse aggregate
As perACI211.1-91 Table6.3.6
For¾inchsizedaggregate&Finenessmodulusof Fine aggregate3.78 valueis0.64
Coarse aggregatewilloccupy
0.64*27
TheODweightofCoarseaggregate, 18.26*100 =1826.26 lb/
-
Proportionbasicmixturewith cementonly Cement= =4.503
-
Coarse Aggregate= = 10.19
Water= =4.25
Air= 0.02* 27 =0.54
19.48
27-19.48 = 7.52
7.52*62.4*2.43 =1140.27 lb/
lb/ |
kg/ |
|
Cement |
885.33 |
525 |
Fine aggregate |
1140.27 |
676 |
Coarseaggregate |
1826 |
1083 |
Hence,the ratiois1:1.287:1.948
RESULTSANDDISCUSSION COMPRESSIVESTRENGTHOFCONCRETE
-
TheCompressivestrengthofConventionalconcrete on7th dayis37.86Mpaanditisincreased54.95%on
28thday.
-
InadditiontoNanosilica4%totheConventional, thecompressivestrengthon7th dayis37.83Mpaand itisincreased53.31%on28th day.Ascomparedto conventional concrete,CompressiveStrength increased 3.09%on 28thday.
-
The hybridfibrecompositioninadditionto(1%Steel Fibre0.015%PolypropyleneFibre)inadditionto 4%Nanosilica,thecompressionstrengthofconcrete at the age of 7 days 37.92Mpa. It was increased 4.51%comparedtoconventionalconcreteattheage of28 daysrespectively.
-
Thehybrid fibre compositionin additionto (1% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,the compressionstrengthof concrete attheageof7days38.1Mpa.Itwas increased5.37%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
The hybridfibrecompositioninadditionto(1%Steel Fibre0.04%PolypropyleneFibre)inadditionto 4%Nanosilica,thecompressionstrengthofconcrete at the age of 7 days 38.07Mpa. It was increased 6.34%comparedtoconventionalconcreteattheage of28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,thecompression strength ofconcrete attheageof7days38.6Mpa.Itwas increased7.74%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,the compressionstrengthof concrete attheageof7days38.54Mpa.Itwas increased8.17%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,the compressionstrengthof concrete at the age of 7 days 38.57Mpa. It was
increased7.09%comparedtoconventionalconcrete attheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre)in addition to4%Nanosilica,thecompressionstrength ofconcrete attheageof7days38.78Mpa.Itwas increased10.1%comparedtoconventionalconcrete attheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre0.03%PolypropyleneFibre)in addition to4%Nanosilica,thecompression strengthof concrete attheageof7days38.66Mpa.Itwas decreased3.95%comparedtoconventionalconcrete attheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre0.04%PolypropyleneFibre)in addition to4%Nanosilica,thecompression strengthof concrete attheageof7days38.78Mpa.Itwas decreased5.93%comparedtoconventionalconcrete attheageof28 daysrespectively.
28thday
7thday
80
70
60
50
40
30
20
10
0
Fig. Compressivestrengthofconcrete
Standard
Ns4
S1P3
S1P6
S1P9
S1.25P3
S1.25P6
S1.25P9
S1.5P3
S1.5P6
S1.5P9
SPLITTINGTENSILESTRENGTHOFCONCRETE
-
The Splitting tensile strength of Conventional concreteon7th dayis4.29Mpaanditisincreased
6.98%on 28thday.
-
InadditionofNanosilica4%totheConventional, the Splitting tensile strengthon7th dayis4.2Mpaand itisincreased67.52%on28th day.Ascomparedto conventional concrete,SplittingtensileStrength increased1.5%on 28thday.
-
Thehybridfibrecompositioninadditionto(1% Steel Fibre0.015%PolypropyleneFibre)inadditionto 4% Nano silica, the splitting tensile strength of concrete at the age of 7 days 4.26Mpa. It was
increased4.4%comparedtoconventional concreteat theageof28 daysrespectively.
-
The hybridfibrecompositioninadditionto(1%Steel Fibre0.03%PolypropyleneFibre)inadditionto 4%Nanosilica,the Splitting tensile strengthof concrete attheageof7days4.35Mpa.Itwas increased4.88%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
The hybridfibrecompositioninadditionto(1%Steel Fibre0.04%PolypropyleneFibre)inadditionto 4% Nano silica, the splitting tensile strength of concrete at the age o 7 days 4.41Mpa. It was increased5.37%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25%Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,thesplitting tensile strengthofconcreteattheageof7days4.5Mpa.It wasincreased6.82%compared toconventional concreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,thesplittingtensile strengthof concrete attheageof7days4.56Mpa.Itwas increased7.78%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,thesplittingtensile strengthof concrete attheageof7days4.59Mpa.Itwas increased8.27%comparedtoconventionalconcrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,thesplitting tensile strengthofconcrete attheageof7days4.64Mpa.It wasincreased11.17%compared toconventional concreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,thesplittingtensile strengthof concrete attheageof7days4.65Mpa.Itwas increased14.07%comparedtoconventional concrete atthe ageof28 daysrespectively.
-
The hybridfibrecompositioninadditionto(1%Steel Fibre0.04%PolypropyleneFibre)inadditionto
4%Nanosilica,thesplitting tensilestrengthof concrete attheageof7days4.67Mpa.Itwas increased15.52%comparedtoconventionalconcrete attheageof28 daysrespectively.
28thday
S1.25P3
S1.25P6
S1.25P9
Fig. Splittingtensilestrengthof concrete
8
6
4
2
0
7thday
Standard
Ns4
S1P3
S1P6
S1P9
S1.5P3
S1.5P6
S1.5P9
FLEXURALSTRENGTHOFCONCRETE
-
TheFlexuralstrengthofConventionalconcreteon 7th dayis2.75Mpaanditisincreased51.69%on28th day.
-
InadditionofNanosilica4%totheConventional, the Flexuralstrengthon7th dayis2.875Mpaanditis increased 51.16%on28th day.Ascompared to conventional concrete, Flexural Strength increased
5.63%on 28thday.
-
Thehybridfibrecompositioninadditionto(1% Steel Fibre0.015%PolypropyleneFibre)inadditionto 4%Nanosilica,theflexuralstrengthofconcreteat the ageof7days3.22Mpa.Itwasincreased22.06% comparedtoconventionalconcreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1% Steel Fibre0.03%PolypropyleneFibre)inadditionto 4%Nanosilica,theflexuralstrengthofconcreteat the ageof7days3.25Mpa.Itwasincreased25.35% comparedtoconventionalconcreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1% Steel Fibre0.04%PolypropyleneFibre)inadditionto 4%Nanosilica,theflexuralstrengthofconcreteat the ageof7days3.27Mpa.Itwasincreased26.76% comparedtoconventionalconcreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.015% Polypropylene Fibre) in
addition to4%Nanosilica,theflexuralstrengthof concrete attheageof7days3.45Mpa.Itwas increased35.21%comparedtoconventional concrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at theageof7days3.5Mpa.Itwasincreased37.08% comparedtoconventionalconcreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.25% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at the ageof7days3.55Mpa.Itwasincreased39.09% comparedtoconventionalconcreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre) in addition to4%Nanosilica,theflexuralstrengthof concrete attheageof7days3.85Mpa.Itwas increased49.29%comparedtoconventional concrete atthe ageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.03%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at theageof7days3.9Mpa.Itwasincreased54.46% comparedtoconventionalconcreteattheageof28 daysrespectively.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.04%Polypropylene Fibre)inaddition to4%Nanosilica,theflexuralstrengthofconcrete at the ageof7days3.92Mpa.Itwasincreased55.86% comparedtoconventionalconcreteattheageof28 daysrespectively.
Standard
Ns4
S1P3
S1P6
S1P9
S1.25P3
S1.25P6
S1.25P9
S1.5P3
S1.5P6
Fig. Flexuralstrengthofconcrete
10
8
6
4
2
0
7thday
28thday
CONCLUSION
COMPRESSIVESTRENGTH
-
Compressivestrengthattainsmaximum atadditionof 4%of Nanosilica, 1.5%SteelFibresand0.01% Polypropylene fibrestotheM60 grade concrete.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre 0.015% Polypropylene Fibre)in addition to4%Nanosilica,thecompressionstrength ofconcrete attheageof7days38.78Mpa.Itwas increased10.1%comparedtoconventionalconcrete attheageof28 daysrespectively.
SPLITTINGTENSILESTRENGTH
-
Splittingtensilestrengthattainsmaximumataddition of4%ofNanosilica,1.5%SteelFibresand0.04% Polypropylene fibrestotheM60 grade concrete.
-
Thehybridfibrecompositioninadditionto(1% Steel Fibre0.04%PolypropyleneFibre)inadditionto 4%Nanosilica,thesplitting tensilestrengthof concrete attheageof7days4.67Mpa.Itwas increased15.52%comparedtoconventionalconcrete attheageof28 daysrespectively.
FLEXURALSTRENGTH
-
Flexuralstrengthattainsmaximumatadditionof4% of Nano silica, 1.5% Steel Fibres and 0.04% Polypropylene fibrestotheM60 grade concrete.
-
Thehybridfibrecompositioninadditionto(1.5% Steel Fibre0.04%PolypropyleneFibre)in addition to4%Nanosilica,theflexuralstrengthofconcrete at the ageof7days3.92Mpa.Itwasincreased55.86% comparedtoconventionalconcreteattheageof28 daysrespectively.
REFERENCES
-
lker FatihKara,AshrafF.Ashour,(2015)FLEXURAL BEHAVIOROFHYBRIDFRP/STEEL REINFORCED
CONCRETE BEAMS Science Direct, Composite Structures129 (2015)111121
-
QinghuaLi,Xiang Gao,Shilang Xu,(2016)MULTIPLE EFFECTS OFNANO-SiO2ANDHYBRIDFIBERSON PROPERTIESOFHIGHTOUGHNESS FIBER REINFORCEDCEMENTITIOUS COMPOSITES WITH
S1.5P9
HIGHVOLUMEFLYASH ScienceDirect,Cementand ConcreteComposites72 (2016)201e212
-
R.H. Mohankar, M.D. Pidurkar, P.V Thakre,(2016)
HYBRID FIBRE REINFORCED CONCRETE
InternationalJournalofScience,EngineeringandTechnology Research (IJSETR),Volume5, Issue1, January2016.
4.R.Yu,P.Tang,P.Spiesz,(2014)A STUDY OF MULTIPLE EFFECTS OF NANO-SILICA AND HYBRIDFIBRESONTHEPROPERTIESOFULTRA- HIGHPERFORMANCE FIBREREINFORCED CONCRETE(UHPFRC)INCORPORATING WASTE
BOTTOM ASH(WBA)ScienceDirect,Constructionand BuildingMaterials60 (2014)98110
5.R.Yu, P. Spiesz, H.J.H.Brouwers,(2014)STATIC PROPERTIES ANDIMPACTRESISTANCEOFA GREENULTRA-HIGH PERFORMANCEHYBRID FIBREREINFORCED CONCRETE(UHPHFRC) EXPERIMENTS ANDMODELINGScienceDirect,
Constructionand BuildingMaterials68 (2014)158171
-
SelinaRubyG.,Geethanjali C.,JaisonVarghese,P.Muthu Priya,(2014)INFLUENCE OFYBRIDFIBERON
REINFORCEDCONCRETE International Journalof Advanced Structures and Geotechnical Engineering ISSN
2319-5347, Vol.03, No. 01, January2014
-
SoonPohYap,Chun HooiBu,U.JohnsonAlengaram, (2014) FLEXURAL TOUGHNESS CHARACTERISTICS OFSTEEL-POLYPROPYLENE HYBRIDFIBREREINFORCED OILPALM SHELL
CONCRETE Science Direct, Materials and Design 57 (2014)652659