The Study Of Thermal Stability And Decomposition In Cadmium Oxalate Single Crystals

DOI : 10.17577/IJERTV1IS8004

Download Full-Text PDF Cite this Publication

Text Only Version

The Study Of Thermal Stability And Decomposition In Cadmium Oxalate Single Crystals

Babita A. Saiyed

Shree P.M.Patel College of Electronics & Communication, Anand Peoples Medicare Society, Nr. Sardar Baug, Anand-388001 ABSTRACT

Cadmium Oxalate Single crystal grown using well known technique of crystal growth i.e gel technique. The grown crystal characterized using thermal technique. Their thermal behaviour is investigated using thermo analytical techniques (TGA,DTA, DSC). The thermogram reveals that the anhydrous oxalate is formed by liberating three molecules of water in the first step of transition gives the same reaction in both air and nitrogen atmosphere .The second phase transition results in CdO in air atmosphere while Cd is formed in nitrogen atmosphere at 385C. Based on the data obtained from thermograms, different mechanic and non-mechanic equations are used to calculate kinetic parameters such as activation energy, order of reaction, frequency factor and entropy of the grown crystal.

Key words: Gel method, crystal growth,cadmium oxalate, characterisation

INTRODUCTION:

The thermal methods of investigations are generally referred to as thermo analytical techniques. This is an important experimental method for characterizing a system by measuring the changes in physico chemical properties as functions of increasing temperature with time. Cadmium oxalate crystals are obtained by diffusion of cadmium ions through silica hydrogel impregnated with oxalic acid at room temperature. The study of thermal analysis is significant for knowing the different phases and stages of stability and hence the grown crystals have been subjected to thermal treatments in air and nitrogen atmosphere using gravimetric thermal techniques. The methods used in the present analysis are thermogravimetry (TG) and Differential Thermal Analysis (DTA) and DSC. Our aim to do thermal analysis is to measure the temperature of transition, reliability of crystal for particular application, compositional analysis, stability of substance and other dynamic properties.

EXPERIMENTAL

The thermogravimetric analysis (TGA) is carried out using Perkin Elmer analyzer at ambient temperature respectively. The sample is heated at 10 °C/min. in the temperature range 50°C900°C. The thermograms have been used for evaluation of some important kinetic parameters in respect of the decomposition phases of cadmium oxalate crystals. The DTA analysis is performed on Mettler 2000 C system. During the analysis, thermal energy is added or subtracted from the sample and the reference material at the same temperature. A difference between temperatures of reference material and sample yields a direct calorimetric measurements of the transition energy. The DSC analysis is performed on Perkin Elmer DSC I Instrument . DSC is carried out only in nitrogen .

RESULTS AND DISCUSSIONS

From the curves obtained from TGA, DTA and DSC one can say that the decomposition in air atmosphere consists of two steps only while in the nitrogen atmosphere that has three steps, which is because in air atmosphere the final product is the metal oxide and do not reach to the metal.

TGA DTA Curve at heating rate of 10 0C/min in N2 atm. TGA DTA Curve at heating rate of 10 0C/min in N2 atm..

Atm.

Step

Temp. Range(C)

Mean Temp.(C)

Mass Loss %

Reaction

Obs.

Cal.

N2

I

55 -155

105

21.25

21.23

CdC2O4 . 3H2O = CdC2O4 + 3H2O

II

265 -311

339.5

49.58

49.53

CdC2O4 = CdO +CO + CO2

III

400-596

498

55.417

55.8

CdO = Cd + 1/2O2

Air

I

56 — 145

98

21.25

21.23

CdC2O4 . 3H2O = CdC2O4 + 3H2O

II

264 303

283.5

49.58

49.53

CdC2O4 = CdO + CO + CO2

Thermal kinetics:

Horowitz – Metzger relation

1 1 1 n

E

Where T-Tm = q, n 1: n = 1/2, 1/4, 2/3, etc. From the

log

1 n

2.303RTm2

plot the activation energy (E) can be calculated from the slope of the graph.

= Weight loss up to particular temperature / Total weight loss in the step

R = Gas constant = 8.31432 x 103 J K -1mol -1 , = Heating rate (K/min-1) ,T = Temperature (K) Z = Frequency factor (min-1) ,Tm = Temperature of maximum reaction rate.

Piloyan – Novikova relation

ZR

E From the plot log (/T2) 1/T, E can be calculated from the slope and Z

log log

2 E 2.303RT

T

1/2

from the intercept of the graph obtained.

Coats-Redferm relation

1/2

From the plot

log 21

1/T, E can be

log 21 log ZR E

T2

T

2

E

    1. RT

      calculated from the slope and Z from the intercept of the graph obtained. Hence, the values of entropy S* are obtained using the following equation:

      Z kTm exp S *

      h R

      Kinetic parameters evaluated from non-mechanistic equations for thermal analysis

      Relation used

      Atm.

      Step

      Order of Reaction (n)

      Frequency Factor

      Z

      Activation Energy

      Entropy S*

      -1 -1

      (J. K mole )

      (eV)

      (J/mole)

      H – M

      Air

      I

      ½

      0.599

      57724.432

      P – N

      6

      1.09 x 10

      0.609

      58688.112

      -131.18

      C – R

      1

      6

      1.27 x 10

      0.651

      62735.568

      -129.80

      Broido

      1

      0.716

      68999.488

      H – M

      II

      ½

      1.95

      187917.60

      P – N

      10

      4.07 x 10

      2.04

      196590.72

      -47.03

      C – R

      1

      10

      9.09 x 10

      2.164

      208540.35

      -40.34

      Broido

      1

      2.96

      285249.28

      H – M

      N

      2

      I

      ½

      0.6

      57820.8

      P –

      5

      4.83 x 10

      0.582

      56086.18

      -138.46

      C – R

      1

      5

      8.42 x 10

      0.635

      61193.68

      -136.78

      Broido

      1

      0.691

      66590.29

      H -M

      II

      ½

      2.334

      224922.91

      P – N

      10

      2.17 x 10

      2.0

      192736.0

      -52.34

      C -R

      1

      10

      6.5 x 10

      2.12

      204300.16

      -43.22

      Broido

      1

      2.52

      242847.36

      H -M

      III

      ½

      0.945

      91054.77

      P – N

      5

      2.03 x 10

      0.715

      68903.12

      -151.23

      C -R

      1

      5

      6.82 x 10

      0.899

      86634.83

      -141.16

      Broido

      1

      1.177

      113425.14

      Broido relation: – lnln(1/y) = (E/(RT)) + constant. Here y = fraction of the number of initial molecules not yet decomposed.Where WT = weight of active material at temperature T,W0 = weight of the material taken initially,W = weight of the material at the end of reaction, Plotting lnln(1/y) 1/T gives the value of the activation energy by the slope of this plot.Kinetic parameters evaluated from non-mechanistic equations for thermal analysis of CdC2O4 . 3H2O

      k T

      Borchardt and Daniels

      A a

      k = Specific reaction rate constant ( min-1 ),A =

      Total area of a peak (min 0C ) , T = Peak height at any temperature T ( 0C ), a = Area of the peak at the temperature T (min 0C )

      Piloyan, Ryabchikov and Novikova

      lnT C' E RT

      The values of T are taken

      directly from the DTA curve in units of length.Thus by ploting the graph of lnT 1/T we have calculated the required activation energy and frequency factor

      Some kinetic parameters calculated from DTA using different models

      Relation used

      Atm.

      Stage

      Activation energy E (eV)

      Frequency Factor

      -1

      Z (min )

      Order of reaction (n)

      Entropy S

      -1 -1

      (J. K .mol )

      P R N

      N

      2

      I

      0.686

      9

      1.075 x 10

      1

      -74.556

      II

      2.04

      16

      2.24 x 10

      62.521

      Air

      I

      0.683

      10

      1.67 x 10

      1

      -51.75

      II

      1.83

      14

      6.30 x 10

      32.836

      B D

      N

      2

      I

      0.779

      8

      3.268 x 10

      1

      -84.469

      II

      2.33

      16

      3.49 x 10

      66.207

      Air

      I

      0.672

      8

      2.264 x 10

      1

      -87.508

      II

      2.064

      15

      1.425 x 10

      39.617

      Matusita and Sakka (MS) relation log[-ln(1-x)] = – n log mE + constant

      2.303 RT

      Where E is the activation energy, is the healing rate, n and m are numerical constant, depend upon the mechanism of crytallization

      Some kinetic parameters calculated from DSC thermogram

      Peak

      Peak Height (mW)

      Peak Area (mJ)

      Peak Temp.(C)

      H

      (J/g)

      C

      p

      -1

      (Cal.g C)

      r

      eff

      (A)

      I

      39.26

      7337.92

      108.729

      587.88

      1.521

      0.57

      II

      13.108

      2692.72

      360.214

      215.728

      0.508

      1.55

      Relation used

      Atm.

      Stage

      Activation Energy E (eV)

      Frequency Factor

      -1

      Z (min )

      Order of reaction (n)

      Entropy S

      -1 -1

      (J. K .mol )

      M S

      N

      2

      I

      0.912

      8

      9.016 x 10

      1

      -75.562

      II

      2.437

      14

      5.197 x 10

      30.512

      CONCLUSIONS:

      The crystals of cadmium oxalate trihydrate are thermally stable upto 540C, beyond which they begin to decompose. implies weak ionic bonds.The decomposition of the grown crystals occurs sequentially, gradually in three stages in nitrogen atmosphere while in two steps in air atmosphere. First, dehydration takes place, when the water molecules are liberated out. Then, the anhydrous material breaks down (the ionic bonding may be breaking), resulting ultimately into

      the production of cadmium oxide which is seen not to be stable for high temperatures, upto around 400 0C.The activation energy (and so also the frequency factor) of the dehydration step is the smallest of all the stages of decomposition implies low energies involved for loosening of the bonded water molecules.

      References:

      1. K. Ceilis, I. Van Driesseche, R. Mouton, G. Vanhoyland and S. Hoste, Measurement Sci. Rev.,

        1(2001)177

      2. P. J. Haines, Thermal methods of analysis: principles, applications and problems, Black Academic & Professional, Chapman and Hall, (1995)

      3. J. P. Redfern, Thermal Analysis Review, vol.4, (Stanton Instruments, London, U.K., 1967).

      4. W. W. Wendlandt, Thermal Methods of Analysis, (Interscience Publishers, New York, 1964). 5. A. Broido, J. Poly. Sci., 7A-2(1969)1761.

  1. H. J. Brochardt and F. J. Daneils, J. Am. Chem. Soc., 79(1957)41.

  2. S. M. Dharmaprakash and P. M. Rao, Cryst. Res. Technol., 24(1989)693.

  3. K. V. Bangera and P. MohanRao, Bull. Mater. Sci., 15(1992)339

  4. K. S. Raju, K. N. Krishna, J. Issac and M. A. Ittyachen, Bull. Mater. Sci., 17(1994)1447

  5. Varughese John, M. A. Ittyachen and K. S. Raju, Bull. Mater. Sci., 20(1997)37.

  6. Varughese John, M. A. Ittyachen and K. S. Raju, Bull. Mater. Sci., 20(1997)1059.

  7. K. S. Raju, John Varughese and M. A. Ittyachen, J. Mater. Sci., 21(1998)375.

  8. M. V. John and M. A. Ittyachen, Bull. Mater. Sci., 21(1998)387.

  9. M. V. John, Indian J. Pure Appl. Phys,. 37(1999)115

  10. N. Jongen, H. Hofmann, P. Bowen, J. Lemare, Mater. Sci. Lett. 19(200)1073

  11. M. V. John and M. A. Ittyachen, Cryst. Res. Technol., 36(2001)141.

  12. Y. Atlas, H. Tel, Nucl. Mater., 298(2001)316

  13. V. Mansotra, K. K. Raina, P. N. Kotru and M. L. Koul, J. Mater. Sci., 26(1991)6729.

  14. T. Lopez, J. Stockel, J. F. Peraza, M. E. Torres and A. C. Yanes, ryst. Res. Technol.,

    80(1995)677.

  15. A. C. Yanes, T. Lopez, J. Stockel, J. F. Peraza and M. E. Torres, J. Mater. Sci., 31(1996)2683.

  16. D. Dollimore, Thermochimica Acta, 117(1987)331

  17. H. H. Horowitz and G. Metzger, Anal. Chem., 35(1963)1464.

  18. D. W. van Krevelen, C. van Heerden and F. J. Huntjens, Fuel, 30(1951)253.

  19. E. S. Freeman and B. Carroll, J. Phys. Chem., 62(1958)394.

  20. C. D. Doyle, J. Appl. Poly. Sci., 5(1961)285.

  21. G. O. Piloyan and O. S. Novikova, Russian J. Inorg. Chem., 12(1966)313.

  22. A. W. Coats and J. P. Redfern, Nature, 201(1964)68. 28. P. Kofstad, Nature, 179(1957)1362.

  1. R. T. Foley and C. J. Guare, J. Electrochem. Soc., 106(1959)936.

  2. M. C. Patel and Arabinda Ray, J. Phys. Chem. Solids, 58(1997)749.

  3. F. J. Rethinam, D. Arivaoli, S. Ramasamy and P. Ramasamy, Mater. Res. Bull., 29(1994)309.

  4. N. S. Rao and O. G. Palanna, Bull. Mater. Sci., 18(1995)593.

  5. M. M. Abdel-Kader, F. El-kabbany and A. El-Shawarby, Phys. Stat. Sol. (a), 127(1991)121.

  6. H. Khan and A. H. Khan, Bull. Mater. Sci., 16(1993)357.

  7. M. M. Abdel-Kader, F. El-Kabbany and S. Taha, J. Mater. Sci. : Materials in Electronics, 1(1990)201.

  8. P. Selvarajan, B. N. Das, H. B. Gon and K. V. Rao, J. Mater. Sci. Lett. 12(1993)1210.

  9. M. E. Torres, A. C. Yanes, T. Lopez, J. Stockel and J. F. Peraza, J. Cryst. Growth, 156(1995)421.

  10. P. N. Kotru, N. K. Gupta, K. K. Raina and M. L. Koul, Bull. Mater. Sci., 8(1986)547.

  11. P. N. Kotru, K. K. Raina and M. L. Koul, J. Mater. Sci. Lett., 6(1987)711.

  12. Anima Jain, Sushma Bhat, Sanjay Pandita, M. L. Koul and P. N. Kotru, Bull. Mater. Sci., 20(1997)1089.

  13. P. Murray and J. White, Trans. Brit. Ceram. Soc., 54(1955)3.

  14. H. J. Borchardt, J. Inorg. Nucl. Chem., 12(1960)252.

  15. H. E. Kissinger, J. Res. Nat. Bur. Stand., 57(1956)217.

44. T. Ozawa, Netsu, 1(1974)2.

Leave a Reply